25 square2 = MatrixType::Random(
cols,
cols), res2 = MatrixType::Random(
cols,
cols);
26 RowVectorType
v1 = RowVectorType::Random(
rows), vrres(
rows);
27 ColVectorType vc2 = ColVectorType::Random(
cols), vcres(
cols);
28 OtherMajorMatrixType tm1 =
m1;
30 Scalar s1 = internal::random<Scalar>(), s2 = internal::random<Scalar>(), s3 = internal::random<Scalar>();
46 VERIFY_IS_APPROX((-
m1.conjugate() * s2) * (s1 * vc2), (-
m1.conjugate() * s2).eval() * (s1 * vc2).eval());
47 VERIFY_IS_APPROX((-
m1 * s2) * (s1 * vc2.conjugate()), (-
m1 * s2).eval() * (s1 * vc2.conjugate()).eval());
49 (-
m1.conjugate() * s2).eval() * (s1 * vc2.conjugate()).eval());
52 (s1 * vc2.transpose()).eval() * (-
m1.adjoint() * s2).eval());
54 (s1 * vc2.adjoint()).eval() * (-
m1.transpose() * s2).eval());
56 (s1 * vc2.adjoint()).eval() * (-
m1.adjoint() * s2).eval());
59 (-
m1.adjoint() * s2).eval() * (s1 *
v1.transpose()).eval());
61 (-
m1.transpose() * s2).eval() * (s1 *
v1.adjoint()).eval());
63 (-
m1.adjoint() * s2).eval() * (s1 *
v1.adjoint()).eval());
68 (s1 *
v1.conjugate()).eval() * (-
m1.conjugate() * s2).eval());
71 (-
m1.adjoint() * s2).eval() * (s1 *
v1.adjoint()).eval());
74 Index i = internal::random<Index>(0,
m1.rows() - 2);
75 Index j = internal::random<Index>(0,
m1.cols() - 2);
76 Index r = internal::random<Index>(1,
m1.rows() -
i);
77 Index c = internal::random<Index>(1,
m1.cols() -
j);
78 Index i2 = internal::random<Index>(0,
m1.rows() - 1);
79 Index j2 = internal::random<Index>(0,
m1.cols() - 1);
82 m1.col(j2).adjoint().eval() *
m1.block(0,
j,
m1.rows(),
c).eval());
84 m1.block(
i, 0,
r,
m1.cols()).eval() *
m1.row(i2).adjoint().eval());
97 m1.reverse() *
m2.reverse().adjoint());
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:133
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
M1<< 1, 2, 3, 4, 5, 6, 7, 8, 9;Map< RowVectorXf > v1(M1.data(), M1.size())
int rows
Definition: Tutorial_commainit_02.cpp:1
int cols
Definition: Tutorial_commainit_02.cpp:1
void adjoint(const MatrixType &m)
Definition: adjoint.cpp:85
SCALAR Scalar
Definition: bench_gemm.cpp:45
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
General-purpose arrays with easy API for coefficient-wise operations.
Definition: Array.h:48
Convenience specialization of Stride to specify only an inner stride See class Map for some examples.
Definition: Stride.h:93
A matrix or vector expression mapping an existing array of data.
Definition: Map.h:96
Holds strides information for Map.
Definition: Stride.h:55
@ Unaligned
Definition: Constants.h:235
Eigen::Matrix< Scalar, Dynamic, Dynamic, ColMajor > tmp
Definition: level3_impl.h:365
squared absolute sa ArrayBase::abs2 DOXCOMMA MatrixBase::cwiseAbs2 square(power 2)
double Zero
Definition: pseudosolid_node_update_elements.cc:35
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2