AxiPoroProblem< ELEMENT, TIMESTEPPER > Class Template Reference

Problem class. More...

+ Inheritance diagram for AxiPoroProblem< ELEMENT, TIMESTEPPER >:

Public Member Functions

 AxiPoroProblem ()
 Constructor. More...
 
void set_boundary_values ()
 Set the time-dependent boundary values. More...
 
void set_initial_condition ()
 Set the initial conditions. More...
 
void doc_solution (const unsigned &label)
 Doc the solution. More...
 
void actions_before_newton_solve ()
 Actions before newton solve (empty) More...
 
void actions_after_newton_solve ()
 Actions after newton solve (empty) More...
 
void actions_before_implicit_timestep ()
 Actions before implicit timestep – update boundary conditions. More...
 
void complete_problem_setup ()
 Complete problem setup. More...
 
TIMESTEPPER * my_time_stepper_pt ()
 Access to timestepper. More...
 
- Public Member Functions inherited from oomph::Problem
virtual void debug_hook_fct (const unsigned &i)
 
void set_analytic_dparameter (double *const &parameter_pt)
 
void unset_analytic_dparameter (double *const &parameter_pt)
 
bool is_dparameter_calculated_analytically (double *const &parameter_pt)
 
void set_analytic_hessian_products ()
 
void unset_analytic_hessian_products ()
 
bool are_hessian_products_calculated_analytically ()
 
void set_pinned_values_to_zero ()
 
bool distributed () const
 
virtual void actions_before_adapt ()
 
virtual void actions_after_adapt ()
 Actions that are to be performed after a mesh adaptation. More...
 
OomphCommunicatorcommunicator_pt ()
 access function to the oomph-lib communicator More...
 
const OomphCommunicatorcommunicator_pt () const
 access function to the oomph-lib communicator, const version More...
 
 Problem ()
 
 Problem (const Problem &dummy)=delete
 Broken copy constructor. More...
 
void operator= (const Problem &)=delete
 Broken assignment operator. More...
 
virtual ~Problem ()
 Virtual destructor to clean up memory. More...
 
Mesh *& mesh_pt ()
 Return a pointer to the global mesh. More...
 
Mesh *const & mesh_pt () const
 Return a pointer to the global mesh (const version) More...
 
Mesh *& mesh_pt (const unsigned &imesh)
 
Mesh *const & mesh_pt (const unsigned &imesh) const
 Return a pointer to the i-th submesh (const version) More...
 
unsigned nsub_mesh () const
 Return number of submeshes. More...
 
unsigned add_sub_mesh (Mesh *const &mesh_pt)
 
void flush_sub_meshes ()
 
void build_global_mesh ()
 
void rebuild_global_mesh ()
 
LinearSolver *& linear_solver_pt ()
 Return a pointer to the linear solver object. More...
 
LinearSolver *const & linear_solver_pt () const
 Return a pointer to the linear solver object (const version) More...
 
LinearSolver *& mass_matrix_solver_for_explicit_timestepper_pt ()
 
LinearSolvermass_matrix_solver_for_explicit_timestepper_pt () const
 
EigenSolver *& eigen_solver_pt ()
 Return a pointer to the eigen solver object. More...
 
EigenSolver *const & eigen_solver_pt () const
 Return a pointer to the eigen solver object (const version) More...
 
Time *& time_pt ()
 Return a pointer to the global time object. More...
 
Timetime_pt () const
 Return a pointer to the global time object (const version). More...
 
doubletime ()
 Return the current value of continuous time. More...
 
double time () const
 Return the current value of continuous time (const version) More...
 
TimeStepper *& time_stepper_pt ()
 
const TimeSteppertime_stepper_pt () const
 
TimeStepper *& time_stepper_pt (const unsigned &i)
 Return a pointer to the i-th timestepper. More...
 
ExplicitTimeStepper *& explicit_time_stepper_pt ()
 Return a pointer to the explicit timestepper. More...
 
unsigned long set_timestepper_for_all_data (TimeStepper *const &time_stepper_pt, const bool &preserve_existing_data=false)
 
virtual void shift_time_values ()
 Shift all values along to prepare for next timestep. More...
 
AssemblyHandler *& assembly_handler_pt ()
 Return a pointer to the assembly handler object. More...
 
AssemblyHandler *const & assembly_handler_pt () const
 Return a pointer to the assembly handler object (const version) More...
 
doubleminimum_dt ()
 Access function to min timestep in adaptive timestepping. More...
 
doublemaximum_dt ()
 Access function to max timestep in adaptive timestepping. More...
 
unsignedmax_newton_iterations ()
 Access function to max Newton iterations before giving up. More...
 
void problem_is_nonlinear (const bool &prob_lin)
 Access function to Problem_is_nonlinear. More...
 
doublemax_residuals ()
 
booltime_adaptive_newton_crash_on_solve_fail ()
 Access function for Time_adaptive_newton_crash_on_solve_fail. More...
 
doublenewton_solver_tolerance ()
 
void add_time_stepper_pt (TimeStepper *const &time_stepper_pt)
 
void set_explicit_time_stepper_pt (ExplicitTimeStepper *const &explicit_time_stepper_pt)
 
void initialise_dt (const double &dt)
 
void initialise_dt (const Vector< double > &dt)
 
Data *& global_data_pt (const unsigned &i)
 Return a pointer to the the i-th global data object. More...
 
void add_global_data (Data *const &global_data_pt)
 
void flush_global_data ()
 
LinearAlgebraDistribution *const & dof_distribution_pt () const
 Return the pointer to the dof distribution (read-only) More...
 
unsigned long ndof () const
 Return the number of dofs. More...
 
unsigned ntime_stepper () const
 Return the number of time steppers. More...
 
unsigned nglobal_data () const
 Return the number of global data values. More...
 
unsigned self_test ()
 Self-test: Check meshes and global data. Return 0 for OK. More...
 
void enable_store_local_dof_pt_in_elements ()
 
void disable_store_local_dof_pt_in_elements ()
 
unsigned long assign_eqn_numbers (const bool &assign_local_eqn_numbers=true)
 
void describe_dofs (std::ostream &out= *(oomph_info.stream_pt())) const
 
void enable_discontinuous_formulation ()
 
void disable_discontinuous_formulation ()
 
void get_dofs (DoubleVector &dofs) const
 
void get_dofs (const unsigned &t, DoubleVector &dofs) const
 Return vector of the t'th history value of all dofs. More...
 
void set_dofs (const DoubleVector &dofs)
 Set the values of the dofs. More...
 
void set_dofs (const unsigned &t, DoubleVector &dofs)
 Set the history values of the dofs. More...
 
void set_dofs (const unsigned &t, Vector< double * > &dof_pt)
 
void add_to_dofs (const double &lambda, const DoubleVector &increment_dofs)
 Add lambda x incremenet_dofs[l] to the l-th dof. More...
 
doubleglobal_dof_pt (const unsigned &i)
 
doubledof (const unsigned &i)
 i-th dof in the problem More...
 
double dof (const unsigned &i) const
 i-th dof in the problem (const version) More...
 
double *& dof_pt (const unsigned &i)
 Pointer to i-th dof in the problem. More...
 
doubledof_pt (const unsigned &i) const
 Pointer to i-th dof in the problem (const version) More...
 
virtual void get_inverse_mass_matrix_times_residuals (DoubleVector &Mres)
 
virtual void get_dvaluesdt (DoubleVector &f)
 
virtual void get_residuals (DoubleVector &residuals)
 Get the total residuals Vector for the problem. More...
 
virtual void get_jacobian (DoubleVector &residuals, DenseDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CRDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, CCDoubleMatrix &jacobian)
 
virtual void get_jacobian (DoubleVector &residuals, SumOfMatrices &jacobian)
 
void get_fd_jacobian (DoubleVector &residuals, DenseMatrix< double > &jacobian)
 Get the full Jacobian by finite differencing. More...
 
void get_derivative_wrt_global_parameter (double *const &parameter_pt, DoubleVector &result)
 
void get_hessian_vector_products (DoubleVectorWithHaloEntries const &Y, Vector< DoubleVectorWithHaloEntries > const &C, Vector< DoubleVectorWithHaloEntries > &product)
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, Vector< DoubleVector > &eigenvector, const bool &steady=true)
 Solve the eigenproblem. More...
 
void solve_eigenproblem (const unsigned &n_eval, Vector< std::complex< double >> &eigenvalue, const bool &steady=true)
 
virtual void get_eigenproblem_matrices (CRDoubleMatrix &mass_matrix, CRDoubleMatrix &main_matrix, const double &shift=0.0)
 
void assign_eigenvector_to_dofs (DoubleVector &eigenvector)
 Assign the eigenvector passed to the function to the dofs. More...
 
void add_eigenvector_to_dofs (const double &epsilon, const DoubleVector &eigenvector)
 
void store_current_dof_values ()
 Store the current values of the degrees of freedom. More...
 
void restore_dof_values ()
 Restore the stored values of the degrees of freedom. More...
 
void enable_jacobian_reuse ()
 
void disable_jacobian_reuse ()
 Disable recycling of Jacobian in Newton iteration. More...
 
bool jacobian_reuse_is_enabled ()
 Is recycling of Jacobian in Newton iteration enabled? More...
 
booluse_predictor_values_as_initial_guess ()
 
void newton_solve ()
 Use Newton method to solve the problem. More...
 
void enable_globally_convergent_newton_method ()
 enable globally convergent Newton method More...
 
void disable_globally_convergent_newton_method ()
 disable globally convergent Newton method More...
 
void newton_solve (unsigned const &max_adapt)
 
void steady_newton_solve (unsigned const &max_adapt=0)
 
void copy (Problem *orig_problem_pt)
 
virtual Problemmake_copy ()
 
virtual void read (std::ifstream &restart_file, bool &unsteady_restart)
 
virtual void read (std::ifstream &restart_file)
 
virtual void dump (std::ofstream &dump_file) const
 
void dump (const std::string &dump_file_name) const
 
void delete_all_external_storage ()
 
virtual void symmetrise_eigenfunction_for_adaptive_pitchfork_tracking ()
 
doublebifurcation_parameter_pt () const
 
void get_bifurcation_eigenfunction (Vector< DoubleVector > &eigenfunction)
 
void activate_fold_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const bool &block_solve=true)
 
void activate_bifurcation_tracking (double *const &parameter_pt, const DoubleVector &eigenvector, const DoubleVector &normalisation, const bool &block_solve=true)
 
void activate_pitchfork_tracking (double *const &parameter_pt, const DoubleVector &symmetry_vector, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const bool &block_solve=true)
 
void activate_hopf_tracking (double *const &parameter_pt, const double &omega, const DoubleVector &null_real, const DoubleVector &null_imag, const bool &block_solve=true)
 
void deactivate_bifurcation_tracking ()
 
void reset_assembly_handler_to_default ()
 Reset the system to the standard non-augemented state. More...
 
double arc_length_step_solve (double *const &parameter_pt, const double &ds, const unsigned &max_adapt=0)
 
double arc_length_step_solve (Data *const &data_pt, const unsigned &data_index, const double &ds, const unsigned &max_adapt=0)
 
void reset_arc_length_parameters ()
 
intsign_of_jacobian ()
 
void explicit_timestep (const double &dt, const bool &shift_values=true)
 Take an explicit timestep of size dt. More...
 
void unsteady_newton_solve (const double &dt)
 
void unsteady_newton_solve (const double &dt, const bool &shift_values)
 
void unsteady_newton_solve (const double &dt, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const bool &first, const bool &shift=true)
 
double doubly_adaptive_unsteady_newton_solve (const double &dt, const double &epsilon, const unsigned &max_adapt, const unsigned &suppress_resolve_after_spatial_adapt_flag, const bool &first, const bool &shift=true)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon)
 
double adaptive_unsteady_newton_solve (const double &dt_desired, const double &epsilon, const bool &shift_values)
 
void assign_initial_values_impulsive ()
 
void assign_initial_values_impulsive (const double &dt)
 
void calculate_predictions ()
 Calculate predictions. More...
 
void enable_mass_matrix_reuse ()
 
void disable_mass_matrix_reuse ()
 
bool mass_matrix_reuse_is_enabled ()
 Return whether the mass matrix is being reused. More...
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void refine_uniformly (DocInfo &doc_info)
 
void refine_uniformly_and_prune (DocInfo &doc_info)
 
void refine_uniformly ()
 
void refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform refinement for submesh i_mesh with documentation. More...
 
void refine_uniformly (const unsigned &i_mesh)
 Do uniform refinement for submesh i_mesh without documentation. More...
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh)
 
void p_refine_uniformly_and_prune (const Vector< unsigned > &nrefine_for_mesh, DocInfo &doc_info)
 
void p_refine_uniformly (DocInfo &doc_info)
 
void p_refine_uniformly_and_prune (DocInfo &doc_info)
 
void p_refine_uniformly ()
 
void p_refine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-refinement for submesh i_mesh with documentation. More...
 
void p_refine_uniformly (const unsigned &i_mesh)
 Do uniform p-refinement for submesh i_mesh without documentation. More...
 
void refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void refine_selected_elements (const unsigned &i_mesh, const Vector< RefineableElement * > &elements_to_be_refined_pt)
 
void refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void refine_selected_elements (const Vector< Vector< RefineableElement * >> &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< unsigned > &elements_to_be_refined)
 
void p_refine_selected_elements (const unsigned &i_mesh, const Vector< PRefineableElement * > &elements_to_be_refined_pt)
 
void p_refine_selected_elements (const Vector< Vector< unsigned >> &elements_to_be_refined)
 
void p_refine_selected_elements (const Vector< Vector< PRefineableElement * >> &elements_to_be_refined_pt)
 
unsigned unrefine_uniformly ()
 
unsigned unrefine_uniformly (const unsigned &i_mesh)
 
void p_unrefine_uniformly (DocInfo &doc_info)
 
void p_unrefine_uniformly (const unsigned &i_mesh, DocInfo &doc_info)
 Do uniform p-unrefinement for submesh i_mesh without documentation. More...
 
void adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void adapt ()
 
void p_adapt (unsigned &n_refined, unsigned &n_unrefined)
 
void p_adapt ()
 
void adapt_based_on_error_estimates (unsigned &n_refined, unsigned &n_unrefined, Vector< Vector< double >> &elemental_error)
 
void adapt_based_on_error_estimates (Vector< Vector< double >> &elemental_error)
 
void get_all_error_estimates (Vector< Vector< double >> &elemental_error)
 
void doc_errors (DocInfo &doc_info)
 Get max and min error for all elements in submeshes. More...
 
void doc_errors ()
 Get max and min error for all elements in submeshes. More...
 
void enable_info_in_newton_solve ()
 
void disable_info_in_newton_solve ()
 Disable the output of information when in the newton solver. More...
 
- Public Member Functions inherited from oomph::ExplicitTimeSteppableObject
 ExplicitTimeSteppableObject ()
 Empty constructor. More...
 
 ExplicitTimeSteppableObject (const ExplicitTimeSteppableObject &)=delete
 Broken copy constructor. More...
 
void operator= (const ExplicitTimeSteppableObject &)=delete
 Broken assignment operator. More...
 
virtual ~ExplicitTimeSteppableObject ()
 Empty destructor. More...
 
virtual void actions_before_explicit_stage ()
 
virtual void actions_after_explicit_stage ()
 

Private Member Functions

void create_pressure_elements ()
 Allocate traction/pressure elements. More...
 

Private Attributes

TriangleMesh< ELEMENT > * Bulk_mesh_pt
 Pointer to the "bulk" mesh. More...
 
MeshSurface_mesh_pt
 Mesh for traction/pressure elements. More...
 
std::ofstream Trace_file
 Trace file. More...
 
TIMESTEPPER * My_time_stepper_pt
 

Additional Inherited Members

- Public Types inherited from oomph::Problem
typedef void(* SpatialErrorEstimatorFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error)
 Function pointer for spatial error estimator. More...
 
typedef void(* SpatialErrorEstimatorWithDocFctPt) (Mesh *&mesh_pt, Vector< double > &elemental_error, DocInfo &doc_info)
 Function pointer for spatial error estimator with doc. More...
 
- Public Attributes inherited from oomph::Problem
bool Shut_up_in_newton_solve
 
- Static Public Attributes inherited from oomph::Problem
static bool Suppress_warning_about_actions_before_read_unstructured_meshes
 
- Protected Types inherited from oomph::Problem
enum  Assembly_method {
  Perform_assembly_using_vectors_of_pairs , Perform_assembly_using_two_vectors , Perform_assembly_using_maps , Perform_assembly_using_lists ,
  Perform_assembly_using_two_arrays
}
 Enumerated flags to determine which sparse assembly method is used. More...
 
- Protected Member Functions inherited from oomph::Problem
unsigned setup_element_count_per_dof ()
 
virtual void sparse_assemble_row_or_column_compressed (Vector< int * > &column_or_row_index, Vector< int * > &row_or_column_start, Vector< double * > &value, Vector< unsigned > &nnz, Vector< double * > &residual, bool compressed_row_flag)
 
virtual void actions_before_newton_convergence_check ()
 
virtual void actions_before_newton_step ()
 
virtual void actions_after_newton_step ()
 
virtual void actions_after_implicit_timestep ()
 
virtual void actions_after_implicit_timestep_and_error_estimation ()
 
virtual void actions_before_explicit_timestep ()
 Actions that should be performed before each explicit time step. More...
 
virtual void actions_after_explicit_timestep ()
 Actions that should be performed after each explicit time step. More...
 
virtual void actions_before_read_unstructured_meshes ()
 
virtual void actions_after_read_unstructured_meshes ()
 
virtual void actions_after_change_in_global_parameter (double *const &parameter_pt)
 
virtual void actions_after_change_in_bifurcation_parameter ()
 
virtual void actions_after_parameter_increase (double *const &parameter_pt)
 
doubledof_derivative (const unsigned &i)
 
doubledof_current (const unsigned &i)
 
virtual double global_temporal_error_norm ()
 
unsigned newton_solve_continuation (double *const &parameter_pt)
 
unsigned newton_solve_continuation (double *const &parameter_pt, DoubleVector &z)
 
void calculate_continuation_derivatives (double *const &parameter_pt)
 
void calculate_continuation_derivatives (const DoubleVector &z)
 
void calculate_continuation_derivatives_fd (double *const &parameter_pt)
 
bool does_pointer_correspond_to_problem_data (double *const &parameter_pt)
 
void set_consistent_pinned_values_for_continuation ()
 
- Protected Attributes inherited from oomph::Problem
Vector< Problem * > Copy_of_problem_pt
 
std::map< double *, boolCalculate_dparameter_analytic
 
bool Calculate_hessian_products_analytic
 
LinearAlgebraDistributionDof_distribution_pt
 
Vector< double * > Dof_pt
 Vector of pointers to dofs. More...
 
DoubleVectorWithHaloEntries Element_count_per_dof
 
double Relaxation_factor
 
double Newton_solver_tolerance
 
unsigned Max_newton_iterations
 Maximum number of Newton iterations. More...
 
unsigned Nnewton_iter_taken
 
Vector< doubleMax_res
 Maximum residuals at start and after each newton iteration. More...
 
double Max_residuals
 
bool Time_adaptive_newton_crash_on_solve_fail
 
bool Jacobian_reuse_is_enabled
 Is re-use of Jacobian in Newton iteration enabled? Default: false. More...
 
bool Jacobian_has_been_computed
 
bool Problem_is_nonlinear
 
bool Pause_at_end_of_sparse_assembly
 
bool Doc_time_in_distribute
 
unsigned Sparse_assembly_method
 
unsigned Sparse_assemble_with_arrays_initial_allocation
 
unsigned Sparse_assemble_with_arrays_allocation_increment
 
Vector< Vector< unsigned > > Sparse_assemble_with_arrays_previous_allocation
 
double Numerical_zero_for_sparse_assembly
 
double FD_step_used_in_get_hessian_vector_products
 
bool Mass_matrix_reuse_is_enabled
 
bool Mass_matrix_has_been_computed
 
bool Discontinuous_element_formulation
 
double Minimum_dt
 Minimum desired dt: if dt falls below this value, exit. More...
 
double Maximum_dt
 Maximum desired dt. More...
 
double DTSF_max_increase
 
double DTSF_min_decrease
 
double Minimum_dt_but_still_proceed
 
bool Scale_arc_length
 Boolean to control whether arc-length should be scaled. More...
 
double Desired_proportion_of_arc_length
 Proportion of the arc-length to taken by the parameter. More...
 
double Theta_squared
 
int Sign_of_jacobian
 Storage for the sign of the global Jacobian. More...
 
double Continuation_direction
 
double Parameter_derivative
 Storage for the derivative of the global parameter wrt arc-length. More...
 
double Parameter_current
 Storage for the present value of the global parameter. More...
 
bool Use_continuation_timestepper
 Boolean to control original or new storage of dof stuff. More...
 
unsigned Dof_derivative_offset
 
unsigned Dof_current_offset
 
Vector< doubleDof_derivative
 Storage for the derivative of the problem variables wrt arc-length. More...
 
Vector< doubleDof_current
 Storage for the present values of the variables. More...
 
double Ds_current
 Storage for the current step value. More...
 
unsigned Desired_newton_iterations_ds
 
double Minimum_ds
 Minimum desired value of arc-length. More...
 
bool Bifurcation_detection
 Boolean to control bifurcation detection via determinant of Jacobian. More...
 
bool Bisect_to_find_bifurcation
 Boolean to control wheter bisection is used to located bifurcation. More...
 
bool First_jacobian_sign_change
 Boolean to indicate whether a sign change has occured in the Jacobian. More...
 
bool Arc_length_step_taken
 Boolean to indicate whether an arc-length step has been taken. More...
 
bool Use_finite_differences_for_continuation_derivatives
 
OomphCommunicatorCommunicator_pt
 The communicator for this problem. More...
 
bool Always_take_one_newton_step
 
double Timestep_reduction_factor_after_nonconvergence
 
bool Keep_temporal_error_below_tolerance
 
- Static Protected Attributes inherited from oomph::Problem
static ContinuationStorageScheme Continuation_time_stepper
 Storage for the single static continuation timestorage object. More...
 

Detailed Description

template<class ELEMENT, class TIMESTEPPER>
class AxiPoroProblem< ELEMENT, TIMESTEPPER >

Problem class.

Constructor & Destructor Documentation

◆ AxiPoroProblem()

template<class ELEMENT , class TIMESTEPPER >
AxiPoroProblem< ELEMENT, TIMESTEPPER >::AxiPoroProblem

Constructor.

684 {
685 
686  // Problem is linear
687  Problem::Problem_is_nonlinear=false;
688 
689  // Allocate the timestepper
690  My_time_stepper_pt=new TIMESTEPPER;
692 
693  // disable warnings in assign initial data values
694  My_time_stepper_pt->disable_warning_in_assign_initial_data_values();
695 
696  // Remember it
698 
699  // Solid mesh
700  //-----------
701 
702  TriangleMeshClosedCurve *outer_boundary_pt=0;
703 
704  // Internal boundary to prevent problem with flux B.C.s
705  Vector<TriangleMeshOpenCurve*> inner_open_boundary_pt;
706 
707  // Temporary storage for coords in required format
708  Vector<Vector<double> > temp_coord(2,Vector<double>(2));
709 
710  // Bottom small arc
711  Circle* outer_boundary_lower_circle_pt=
715 
716  // Large arc
717  Circle* outer_boundary_right_circle_pt=
720 
721  // Top small arc
722  Circle* outer_boundary_upper_circle_pt=
726 
727  // Storage for the individual boundary sections
728  Vector<TriangleMeshCurveSection*> outer_curvilinear_boundary_pt(4);
729 
730  // First bit
731  double zeta_start=MathematicalConstants::Pi/2.0;
732  double zeta_end=0;
733  unsigned nsegment=
734  (unsigned)max(
735  3.0,
738  outer_curvilinear_boundary_pt[0]=
739  new TriangleMeshCurviLine(outer_boundary_lower_circle_pt, zeta_start,
740  zeta_end, nsegment, 0);
741 
742  // Second bit
743  zeta_start=-atan(2.0);
744  zeta_end=atan(2.0);
745  nsegment=
746  (unsigned)max(
747  3.0,
751  outer_curvilinear_boundary_pt[1]=
752  new TriangleMeshCurviLine(outer_boundary_right_circle_pt, zeta_start,
753  zeta_end, nsegment, 1);
754 
755  // Third bit
756  zeta_start=2.0*MathematicalConstants::Pi;
757  zeta_end=3.0*MathematicalConstants::Pi/2.0;
758  nsegment=
759  (unsigned)max(
760  3.0,
763  outer_curvilinear_boundary_pt[2]=
764  new TriangleMeshCurviLine(outer_boundary_upper_circle_pt, zeta_start,
765  zeta_end, nsegment, 2);
766 
767  // Fourth bit
768  temp_coord[0][0]=ProblemParameters::Inner_radius;
769  temp_coord[0][1]=ProblemParameters::Domain_radius;
770  temp_coord[1][0]=ProblemParameters::Inner_radius;
771  temp_coord[1][1]=-ProblemParameters::Domain_radius;
772 
773  outer_curvilinear_boundary_pt[3]=
774  new TriangleMeshPolyLine(temp_coord,3);
775 
776  // Make the solid outer boundary
777  outer_boundary_pt=
778  new TriangleMeshClosedCurve(outer_curvilinear_boundary_pt);
779 
780 
781  // Add four internal boundaries emanating from corners to make sure
782  // that no elements have faces on two boundaries.
783  inner_open_boundary_pt.resize(4);
784 
785  // First inner boundary
786  temp_coord[0][0]=ProblemParameters::Inner_radius;
787  temp_coord[0][1]=-ProblemParameters::Domain_radius;
788  temp_coord[1][0]=ProblemParameters::Inner_radius+
790  temp_coord[1][1]=-0.75*ProblemParameters::Domain_radius;
791 
792  Vector<TriangleMeshCurveSection*> inner_open_polyline1_curve_section_pt(1);
793  inner_open_polyline1_curve_section_pt[0]=
794  new TriangleMeshPolyLine(temp_coord,4);
795 
796  inner_open_polyline1_curve_section_pt[0]->
797  connect_initial_vertex_to_curviline(
798  dynamic_cast<TriangleMeshCurviLine*>(outer_curvilinear_boundary_pt[0]),
800 
801  inner_open_boundary_pt[0]=
802  new TriangleMeshOpenCurve(inner_open_polyline1_curve_section_pt);
803 
804  // Second inner boundary
805  temp_coord[0][0]=ProblemParameters::Inner_radius+
807  temp_coord[0][1]=-2.0*ProblemParameters::Domain_radius;
808  temp_coord[1][0]=ProblemParameters::Inner_radius+
810  temp_coord[1][1]=-1.5*ProblemParameters::Domain_radius;
811 
812  TriangleMeshPolyLine *inner_open_polyline2_pt=
813  new TriangleMeshPolyLine(temp_coord,5);
814 
815  inner_open_polyline2_pt->connect_initial_vertex_to_curviline(
816  dynamic_cast<TriangleMeshCurviLine*>(outer_curvilinear_boundary_pt[1]),
817  -atan(2.0));
818 
819  Vector<TriangleMeshCurveSection*> inner_open_polyline2_curve_section_pt(1);
820  inner_open_polyline2_curve_section_pt[0]=inner_open_polyline2_pt;
821 
822  inner_open_boundary_pt[1]=
823  new TriangleMeshOpenCurve(inner_open_polyline2_curve_section_pt);
824 
825  // Third inner boundary
826  temp_coord[0][0]=ProblemParameters::Inner_radius+
828  temp_coord[0][1]=2.0*ProblemParameters::Domain_radius;
829  temp_coord[1][0]=ProblemParameters::Inner_radius+
831  temp_coord[1][1]=1.5*ProblemParameters::Domain_radius;
832 
833  TriangleMeshPolyLine *inner_open_polyline3_pt=
834  new TriangleMeshPolyLine(temp_coord,6);
835 
836  inner_open_polyline3_pt->connect_initial_vertex_to_curviline(
837  dynamic_cast<TriangleMeshCurviLine*>(outer_curvilinear_boundary_pt[1]),
838  atan(2.0));
839 
840  Vector<TriangleMeshCurveSection*> inner_open_polyline3_curve_section_pt(1);
841  inner_open_polyline3_curve_section_pt[0]=inner_open_polyline3_pt;
842 
843  inner_open_boundary_pt[2]=
844  new TriangleMeshOpenCurve(inner_open_polyline3_curve_section_pt);
845 
846  // Fourth inner boundary
847  temp_coord[0][0]=ProblemParameters::Inner_radius;
848  temp_coord[0][1]=ProblemParameters::Domain_radius;
849  temp_coord[1][0]=ProblemParameters::Inner_radius+
851  temp_coord[1][1]=0.75*ProblemParameters::Domain_radius;
852 
853  Vector<TriangleMeshCurveSection*> inner_open_polyline4_curve_section_pt(1);
854  inner_open_polyline4_curve_section_pt[0]=
855  new TriangleMeshPolyLine(temp_coord,7);
856 
857  inner_open_polyline4_curve_section_pt[0]->connect_initial_vertex_to_polyline(
858  dynamic_cast<TriangleMeshPolyLine*>(outer_curvilinear_boundary_pt[3]),
859  0);
860 
861  inner_open_boundary_pt[3]=
862  new TriangleMeshOpenCurve(inner_open_polyline4_curve_section_pt);
863 
864  // Use the TriangleMeshParameters object for gathering all
865  // the necessary arguments for the TriangleMesh object
866  TriangleMeshParameters triangle_mesh_parameters(
867  outer_boundary_pt);
868 
869  // Set the inner boundaries
870  triangle_mesh_parameters.internal_open_curves_pt()=
871  inner_open_boundary_pt;
872 
873  // Target area for triangle
874  triangle_mesh_parameters.element_area() = ProblemParameters::Element_area;
875 
876 #ifdef ADAPTIVE
877 
878  // Build adaptive "bulk" mesh
879  Bulk_mesh_pt=new RefineableTriangleMesh<ELEMENT>(triangle_mesh_parameters,
880  time_stepper_pt());
881 
882  // Create/set error estimator
883  Bulk_mesh_pt->spatial_error_estimator_pt()=new Z2ErrorEstimator;
884 
885  // Choose error tolerances
886  Bulk_mesh_pt->min_permitted_error()=1.0e-4;
887  Bulk_mesh_pt->max_permitted_error()=1.0e-3;
888 
889  Bulk_mesh_pt->max_element_size()=ProblemParameters::Element_area;
890  Bulk_mesh_pt->min_element_size()=1.0e-20;
891 
892  // Actions before projection
893  Bulk_mesh_pt->mesh_update_fct_pt()=
894  &ProblemParameters::edge_sign_setup<ELEMENT>;
895 
896 #else
897 
898  // Create the buk mesh
899  Bulk_mesh_pt = new TriangleMesh<ELEMENT>(triangle_mesh_parameters,
900  time_stepper_pt());
901 
902 #endif
903 
904  // Setup the signs for the fluxes
905  ProblemParameters::edge_sign_setup<ELEMENT>(Bulk_mesh_pt);
906 
907  // Create the surface mesh
908  Surface_mesh_pt = new Mesh;
909 
910  // Assign the traction/pressure elements
912 
913  // Add the submeshes to the global mesh
916 
917  // Build the global mesh
919 
920  // Complete the problem set up
922 
923  // Temporary filename string
924  char filename[500];
925 
926  // Trace filename
927  sprintf(filename,"%s/trace.dat",ProblemParameters::Directory.c_str());
928 
929  // Open the trace file
930  Trace_file.open(filename);
931 
932  // Assign and doc number of eqns
933  oomph_info << "Number of equations: " << assign_eqn_numbers() << std::endl;
934 
935 } // end of problem constructor
AnnoyingScalar sqrt(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:134
void complete_problem_setup()
Complete problem setup.
Definition: unstructured_two_d_curved.cc:942
void create_pressure_elements()
Allocate traction/pressure elements.
Definition: unstructured_two_d_curved.cc:1005
Mesh * Surface_mesh_pt
Mesh for traction/pressure elements.
Definition: unstructured_two_d_curved.cc:669
TIMESTEPPER * My_time_stepper_pt
Definition: unstructured_two_d_curved.cc:675
std::ofstream Trace_file
Trace file.
Definition: unstructured_two_d_curved.cc:672
TriangleMesh< ELEMENT > * Bulk_mesh_pt
Pointer to the "bulk" mesh.
Definition: unstructured_two_d_curved.cc:664
Definition: geom_objects.h:873
Definition: mesh.h:67
void add_time_stepper_pt(TimeStepper *const &time_stepper_pt)
Definition: problem.cc:1545
unsigned add_sub_mesh(Mesh *const &mesh_pt)
Definition: problem.h:1330
void build_global_mesh()
Definition: problem.cc:1493
unsigned long assign_eqn_numbers(const bool &assign_local_eqn_numbers=true)
Definition: problem.cc:1989
TimeStepper *& time_stepper_pt()
Definition: problem.h:1524
Unstructured refineable Triangle Mesh.
Definition: triangle_mesh.template.h:2249
Base class defining a closed curve for the Triangle mesh generation.
Definition: unstructured_two_d_mesh_geometry_base.h:1339
void connect_initial_vertex_to_curviline(TriangleMeshCurviLine *curviline_pt, const double &s_value, const double &tolerance_for_connection=1.0e-14)
Definition: unstructured_two_d_mesh_geometry_base.cc:1259
Definition: unstructured_two_d_mesh_geometry_base.h:662
Definition: unstructured_two_d_mesh_geometry_base.h:1642
Definition: triangle_mesh.template.h:94
Class defining a polyline for use in Triangle Mesh generation.
Definition: unstructured_two_d_mesh_geometry_base.h:868
Definition: triangle_mesh.template.h:424
Definition: error_estimator.h:266
#define max(a, b)
Definition: datatypes.h:23
double Pi
Definition: two_d_biharmonic.cc:235
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 atan(const bfloat16 &a)
Definition: BFloat16.h:636
string filename
Definition: MergeRestartFiles.py:39
double Domain_radius
Radius of the smaller arcs in the curved mesh.
Definition: unstructured_two_d_curved.cc:105
TimeStepper * Internal_time_stepper_pt
Pointer to timestepper for internal dofs.
Definition: unstructured_two_d_curved.cc:480
string Directory
Output directory.
Definition: oscillating_sphere.cc:59
double Element_area
Target area for initial mesh.
Definition: unstructured_two_d_curved.cc:474
double Inner_radius
Definition: unstructured_two_d_curved.cc:108
OomphInfo oomph_info
Definition: oomph_definitions.cc:319

References Eigen::bfloat16_impl::atan(), oomph::TriangleMeshCurveSection::connect_initial_vertex_to_curviline(), ProblemParameters::Directory, ProblemParameters::Domain_radius, ProblemParameters::Element_area, oomph::TriangleMeshParameters::element_area(), MergeRestartFiles::filename, ProblemParameters::Inner_radius, oomph::TriangleMeshParameters::internal_open_curves_pt(), ProblemParameters::Internal_time_stepper_pt, max, oomph::oomph_info, oomph::MathematicalConstants::Pi, oomph::Problem::Problem_is_nonlinear, sqrt(), and oomph::Problem_Parameter::Trace_file.

Member Function Documentation

◆ actions_after_newton_solve()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::actions_after_newton_solve ( )
inlinevirtual

Actions after newton solve (empty)

Reimplemented from oomph::Problem.

598 {}

◆ actions_before_implicit_timestep()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::actions_before_implicit_timestep ( )
inlinevirtual

Actions before implicit timestep – update boundary conditions.

Reimplemented from oomph::Problem.

602  {
604  }
void set_boundary_values()
Set the time-dependent boundary values.
Definition: unstructured_two_d_curved.cc:1035

◆ actions_before_newton_solve()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::actions_before_newton_solve ( )
inlinevirtual

Actions before newton solve (empty)

Reimplemented from oomph::Problem.

595 {}

◆ complete_problem_setup()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::complete_problem_setup

Complete problem setup.

943 {
944 
945  // Loop over all elements to set parameters
946  //-----------------------------------------
947  unsigned n_element = Bulk_mesh_pt->nelement();
948  for(unsigned e=0;e<n_element;e++)
949  {
950  ELEMENT* el_pt = dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(e));
951 
952  el_pt->nu_pt()=&ProblemParameters::Nu;
953  el_pt->solid_body_force_fct_pt()=ProblemParameters::Solid_body_force;
954  el_pt->fluid_body_force_fct_pt()=ProblemParameters::Fluid_body_force;
955  el_pt->mass_source_fct_pt()=ProblemParameters::Mass_source;
956  el_pt->lambda_sq_pt()=&ProblemParameters::Lambda_sq;
957  el_pt->density_ratio_pt()=&ProblemParameters::Density_ratio;
958  el_pt->permeability_pt()=&ProblemParameters::Permeability;
959  el_pt->alpha_pt()=&ProblemParameters::Alpha;
960  el_pt->porosity_pt()=&ProblemParameters::Porosity;
961 
962  // Set the internal q dofs' timestepper to the problem timestepper
963  el_pt->set_q_internal_timestepper(time_stepper_pt());
964 
965  } // end of loop over elements
966 
967 
968  // Pin flux and solid displacement along selected boundaries
969  // ----------------------------------------------------------
970  std::vector<unsigned> pinned_boundaries;
971 
972  // Leave outflow boundary traction free ("do nothing") for "real"
973  // run. Pin and apply flux and displacement for validation case
975  {
976  pinned_boundaries.push_back(0);
977  }
978  pinned_boundaries.push_back(1);
979  pinned_boundaries.push_back(3);
980  unsigned n_boundary=pinned_boundaries.size();
981  for(unsigned ibound=0;ibound<n_boundary;ibound++)
982  {
983  unsigned n_node = Bulk_mesh_pt->nboundary_node(pinned_boundaries[ibound]);
984  for(unsigned i=0;i<n_node;i++)
985  {
986  Node* nod_pt=Bulk_mesh_pt->boundary_node_pt(pinned_boundaries[ibound],i);
987 
988  // Pin all of them: i=0: u_r; i=1: u_z. Subsequent entries
989  // only exist for midside nodes where the remaining entries
990  // represent the Darcy flux at the "flux interpolation points".
991  unsigned n_value=nod_pt->nvalue();
992  for(unsigned i=0;i<n_value;i++)
993  {
994  nod_pt->pin(i);
995  }
996  }
997  }
998 }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Array< double, 1, 3 > e(1./3., 0.5, 2.)
void pin(const unsigned &i)
Pin the i-th stored variable.
Definition: nodes.h:385
unsigned nvalue() const
Return number of values stored in data object (incl pinned ones).
Definition: nodes.h:483
Definition: nodes.h:906
double Permeability
Permeability.
Definition: unstructured_two_d_curved.cc:57
double Alpha
Alpha, the Biot parameter.
Definition: unstructured_two_d_curved.cc:68
double Density_ratio
Ratio of pore fluid density to solid matrix density.
Definition: unstructured_two_d_curved.cc:74
double Porosity
Porosity.
Definition: unstructured_two_d_curved.cc:71
double Nu
Poisson's ratio.
Definition: unstructured_two_d_curved.cc:65
void Mass_source(const double &time, const Vector< double > &x, double &f)
Source term for continuity.
Definition: unstructured_two_d_curved.cc:413
double Lambda_sq
Timescale ratio (non-dim density)
Definition: unstructured_two_d_curved.cc:54
void Fluid_body_force(const double &time, const Vector< double > &x, Vector< double > &f)
Fluid body force.
Definition: unstructured_two_d_curved.cc:386
void Solid_body_force(const double &time, const Vector< double > &x, Vector< double > &b)
Solid body force.
Definition: unstructured_two_d_curved.cc:361
bool command_line_flag_has_been_set(const std::string &flag)
Definition: oomph_utilities.cc:501

References ProblemParameters::Alpha, oomph::CommandLineArgs::command_line_flag_has_been_set(), ProblemParameters::Density_ratio, e(), ProblemParameters::Fluid_body_force(), i, ProblemParameters::Lambda_sq, ProblemParameters::Mass_source(), ProblemParameters::Nu, oomph::Data::nvalue(), ProblemParameters::Permeability, oomph::Data::pin(), ProblemParameters::Porosity, and ProblemParameters::Solid_body_force().

◆ create_pressure_elements()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::create_pressure_elements
private

Allocate traction/pressure elements.

Make traction elements along the top boundary of the bulk mesh.

1006 {
1007  // How many bulk elements are next to boundary 2 (the top boundary)?
1008  unsigned ibound=2;
1009  unsigned n_neigh = Bulk_mesh_pt->nboundary_element(ibound);
1010 
1011  // Now loop over bulk elements and create the face elements
1012  for(unsigned n=0;n<n_neigh;n++)
1013  {
1014  // Create the face element
1017  (Bulk_mesh_pt->boundary_element_pt(ibound,n),
1018  Bulk_mesh_pt->face_index_at_boundary(ibound,n));
1019 
1020  // Add to mesh
1021  Surface_mesh_pt->add_element_pt(pressure_element_pt);
1022 
1023  // Set function pointers
1024  pressure_element_pt->pressure_fct_pt()=&ProblemParameters::boundary_pressure;
1025  pressure_element_pt->traction_fct_pt()=&ProblemParameters::boundary_traction;
1026  }
1027 
1028 } // end of assign_traction_elements
const unsigned n
Definition: CG3DPackingUnitTest.cpp:11
Definition: axisym_poroelasticity_face_elements.h:95
void(*&)(const double &time, const Vector< double > &x, const Vector< double > &n, double &pressure) pressure_fct_pt()
Reference to the pressure function pointer.
Definition: axisym_poroelasticity_face_elements.h:212
void(*&)(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &traction) traction_fct_pt()
Reference to the traction function pointer.
Definition: axisym_poroelasticity_face_elements.h:202
void add_element_pt(GeneralisedElement *const &element_pt)
Add a (pointer to) an element to the mesh.
Definition: mesh.h:617
void boundary_pressure(const double &time, const Vector< double > &x, const Vector< double > &n, double &result)
Pressure around the boundary of the domain.
Definition: unstructured_two_d_curved.cc:426
void boundary_traction(const double &time, const Vector< double > &x, const Vector< double > &n, Vector< double > &traction)
Boundary traction.
Definition: unstructured_two_d_curved.cc:445

References ProblemParameters::boundary_pressure(), ProblemParameters::boundary_traction(), n, oomph::AxisymmetricPoroelasticityTractionElement< ELEMENT >::pressure_fct_pt, and oomph::AxisymmetricPoroelasticityTractionElement< ELEMENT >::traction_fct_pt.

◆ doc_solution()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::doc_solution ( const unsigned label)

Doc the solution.

Write the solution and exact solution to file, and calculate the error.

1229 {
1230 
1231  oomph_info << "Outputting solution " << label
1232  << " for time " << time_pt()->time() << std::endl;
1233 
1234  ofstream some_file;
1235  char filename[100];
1236 
1237  unsigned npts=5;
1238  sprintf(filename,"%s/soln%i.dat",ProblemParameters::Directory.c_str(),label);
1239  some_file.open(filename);
1240  Bulk_mesh_pt->output(some_file,npts);
1241  some_file.close();
1242 
1243  // Output coarse solution
1244  //-----------------------
1245  unsigned npts_coarse=2;
1246  sprintf(filename,"%s/coarse_soln%i.dat",ProblemParameters::Directory.c_str(),label);
1247  some_file.open(filename);
1248  Bulk_mesh_pt->output(some_file,npts_coarse);
1249  some_file.close();
1250 
1251  // Output boundary condition elements
1252  //-----------------------------------
1253  sprintf(filename,"%s/bc_elements%i.dat",ProblemParameters::Directory.c_str(),label);
1254  some_file.open(filename);
1255  Surface_mesh_pt->output(some_file,npts);
1256  some_file.close();
1257 
1259  {
1260 
1261  // Output exact solution
1262  //----------------------
1263  sprintf(filename,"%s/exact_soln%i.dat",ProblemParameters::Directory.c_str(),label);
1264  some_file.open(filename);
1265  Bulk_mesh_pt->output_fct(some_file,
1266  npts,
1267  time(),
1269  some_file.close();
1270 
1271  // Doc error
1272  //----------
1273  Vector<double> norm(3,0.0);
1274  Vector<double> error(3,0.0);
1275  sprintf(filename,"%s/error%i.dat",ProblemParameters::Directory.c_str(),label);
1276  some_file.open(filename);
1277  Bulk_mesh_pt->compute_error(some_file,
1279  time(),
1280  error,norm);
1281  some_file.close();
1282 
1283  // Doc error norm:
1284  oomph_info << std::endl;
1285  oomph_info << "Norm of exact u : " << sqrt(norm[0]) << std::endl;
1286  oomph_info << "Norm of exact q : " << sqrt(norm[1]) << std::endl;
1287  oomph_info << "Norm of exact p : " << sqrt(norm[2]) << std::endl
1288  << std::endl;
1289 
1290  oomph_info << "Norm of u error : " << sqrt(error[0]) << std::endl;
1291  oomph_info << "Norm of q error : " << sqrt(error[1]) << std::endl;
1292  oomph_info << "Norm of p error : " << sqrt(error[2]) << std::endl;
1293  oomph_info << std::endl << std::endl;
1294 
1295  Trace_file << ndof() << " "
1297  << ProblemParameters::Dt << " "
1298  << sqrt(error[0]) << " "
1299  << sqrt(error[1]) << " "
1300  << sqrt(error[2]) << " "
1301  << sqrt(norm[0]) << " "
1302  << sqrt(norm[1]) << " "
1303  << sqrt(norm[2]) << std::endl;
1304  }
1305  else
1306  {
1307  Trace_file << time_pt()->time() << " "
1309  << std::endl;
1310  }
1311 
1312 }
void output(std::ostream &outfile)
Output for all elements.
Definition: mesh.cc:2027
unsigned long ndof() const
Return the number of dofs.
Definition: problem.h:1674
Time *& time_pt()
Return a pointer to the global time object.
Definition: problem.h:1504
double & time()
Return the current value of continuous time.
Definition: problem.cc:11531
double & time()
Return the current value of the continuous time.
Definition: timesteppers.h:123
void exact_soln(const double &time, const Vector< double > &x, Vector< double > &soln)
Definition: unstructured_two_d_curved.cc:301
double pressure_magnitude(const double &time)
Get time-dep pressure magnitude.
Definition: unstructured_two_d_curved.cc:420
double Dt
Timestep.
Definition: unstructured_two_d_curved.cc:51
label
Definition: UniformPSDSelfTest.py:24
int error
Definition: calibrate.py:297

References oomph::CommandLineArgs::command_line_flag_has_been_set(), ProblemParameters::Directory, ProblemParameters::Dt, ProblemParameters::Element_area, calibrate::error, ProblemParameters::exact_soln(), MergeRestartFiles::filename, UniformPSDSelfTest::label, oomph::oomph_info, ProblemParameters::pressure_magnitude(), sqrt(), and oomph::Problem_Parameter::Trace_file.

◆ my_time_stepper_pt()

template<class ELEMENT , class TIMESTEPPER >
TIMESTEPPER* AxiPoroProblem< ELEMENT, TIMESTEPPER >::my_time_stepper_pt ( )
inline

Access to timestepper.

647  {
648  return My_time_stepper_pt;
649  }

◆ set_boundary_values()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::set_boundary_values

Set the time-dependent boundary values.

Set the time dependent boundary values.

1036 {
1037  Vector<double> x(2);
1038 
1040  value_fct(2);
1042  veloc_fct(2);
1044  accel_fct(2);
1045 
1046  // Assign values for analytical value, veloc and accel:
1049 
1052 
1055 
1056 
1057  // Get the nodal index at which values representing edge fluxes
1058  // at flux interpolation points are stored
1059  ELEMENT *el_pt=dynamic_cast<ELEMENT*>(Bulk_mesh_pt->element_pt(0));
1060 
1061  // How many flux interpolation points do we have?
1062  unsigned n=el_pt->nedge_flux_interpolation_point();
1063 
1064  // Provide storage; null out the ones we don't need
1066  flux_fct(2+n,0);
1068  flux_ddt_fct(2+n,0);
1070  flux_d2dt2_fct(2+n,0);
1071 
1072  // Where are the flux values stored?
1073  Vector<unsigned> q_index(n);
1074  for (unsigned j=0;j<n;j++)
1075  {
1076  q_index[j]=el_pt->q_edge_index(j);
1077  flux_fct[q_index[j]]=&ProblemParameters::zero_fct;
1078  flux_ddt_fct[q_index[j]]=&ProblemParameters::zero_fct;
1079  flux_d2dt2_fct[q_index[j]]=&ProblemParameters::zero_fct;
1080  }
1081 
1082 
1083  TIMESTEPPER* timestepper_pt=
1084  dynamic_cast<TIMESTEPPER*>(time_stepper_pt());
1085 
1086  // Assign current (and history) values for solid displacements as well as
1087  // ----------------------------------------------------------------------
1088  // flux along pinned boundaries
1089  //-----------------------------
1090  std::vector<unsigned> pinned_boundaries;
1091 
1092  // Leave outer boundary traction free ("do nothing") for "real"
1093  // run. Pin and apply flux and displacement for validation case
1095  {
1096  pinned_boundaries.push_back(0);
1097  }
1098  pinned_boundaries.push_back(1);
1099  pinned_boundaries.push_back(3);
1100  unsigned n_boundary=pinned_boundaries.size();
1101  for(unsigned ibound=0;ibound<n_boundary;ibound++)
1102  {
1103 
1104  // Assign current (and history) values for solid displacements
1105  //------------------------------------------------------------
1106  // (ignores the flux ones)
1107  //------------------------
1108  unsigned n_node = Bulk_mesh_pt->nboundary_node(pinned_boundaries[ibound]);
1109  for(unsigned i=0;i<n_node;i++)
1110  {
1111  Node* nod_pt=Bulk_mesh_pt->boundary_node_pt(pinned_boundaries[ibound],i);
1112  timestepper_pt->assign_initial_data_values(nod_pt,
1113  value_fct,
1114  veloc_fct,
1115  accel_fct);
1116  }
1117 
1118  // Assign flux
1119  //------------
1120 
1121  // Coordinate vector
1122  Vector<double> x(2);
1123 
1124  // Get the number of elements along boundary
1125  unsigned n_boundary_element=
1126  Bulk_mesh_pt->nboundary_element(pinned_boundaries[ibound]);
1127 
1128  // Loop over the elements along boundary ibound
1129  for(unsigned e=0;e<n_boundary_element;e++)
1130  {
1131  // Upcast the current element to the actual type
1132  ELEMENT *el_pt=
1133  dynamic_cast<ELEMENT*>(Bulk_mesh_pt->
1134  boundary_element_pt(pinned_boundaries[ibound],e));
1135 
1136  // Loop over the edges
1137  for(unsigned edge=0;edge<3;edge++)
1138  {
1139  // Get pointer to node that stores the edge flux dofs for this edge
1140  Node* nod_pt=el_pt->edge_flux_node_pt(edge);
1141 
1142  // Set values for the flux degrees of freedom
1143  if (nod_pt->is_on_boundary(pinned_boundaries[ibound]))
1144  {
1145  // Get face index of face associated with edge
1146  unsigned f=el_pt->face_index_of_edge(edge);
1147 
1148  // Build a temporary face element from which we'll extract
1149  // the outer unit normal
1152 
1153  // Loop over the flux interpolation points
1154  unsigned n_flux_interpolation_points=
1155  el_pt->nedge_flux_interpolation_point();
1156  for(unsigned g=0;g<n_flux_interpolation_points;g++)
1157  {
1158  // Get the global coords of the flux_interpolation point
1159  el_pt->edge_flux_interpolation_point_global(edge,g,x);
1160 
1161  // Get the exact solution
1162  Vector<double> exact_soln(13,0.0);
1164 
1165  // Get unit normal at this flux interpolation point
1166  Vector<double> s(1);
1167  el_pt->face_local_coordinate_of_flux_interpolation_point(edge,g,s);
1168  Vector<double> unit_normal(2);
1169  face_el_pt->outer_unit_normal(s,unit_normal);
1170 
1171 #ifdef PARANOID
1172  // Sanity check
1173  Vector<double> x_face(2);
1174  face_el_pt->interpolated_x(s,x_face);
1175  if ((x_face[0]-x[0])*(x_face[0]-x[0])+
1176  (x_face[1]-x[1])*(x_face[1]-x[1])>1.0e-3)
1177  {
1178  std::stringstream error;
1179  error
1180  << "Discrepancy in coordinate of flux interpolation point\n"
1181  << "(computed by bulk and face elements) for edge " << e
1182  << " and flux int pt " << g << "\n"
1183  << "Face thinks node is at: "
1184  << x_face[0] << " " << x_face[1] << "\n"
1185  << "Bulk thinks node is at: "
1186  << x[0] << " " << x[1] << "\n";
1187  throw OomphLibError(
1188  error.str(),
1191  }
1192 #endif
1194  {
1195  // Set the boundary flux -- only does the current values;
1196  // should really do the history values, but it's messy...
1197  nod_pt->set_value(q_index[g],
1198  exact_soln[2]*unit_normal[0]+
1199  exact_soln[3]*unit_normal[1]);
1200  }
1201  else
1202  {
1203  // assign zero
1204  timestepper_pt->assign_initial_data_values(nod_pt,
1205  flux_fct,
1206  flux_ddt_fct,
1207  flux_d2dt2_fct);
1208  }
1209 
1210  } // End of loop over flux interpolation points
1211 
1212  // Don't need face element on that edge any more
1213  delete face_el_pt;
1214 
1215  } // End if for edge on required boundary
1216  } // End of loop over edges
1217 
1218  } // End of loop over boundary elements
1219  } // End of loop over boundaries
1220  }
void set_value(const unsigned &i, const double &value_)
Definition: nodes.h:271
void outer_unit_normal(const Vector< double > &s, Vector< double > &unit_normal) const
Compute outer unit normal at the specified local coordinate.
Definition: elements.cc:6006
double interpolated_x(const Vector< double > &s, const unsigned &i) const
Definition: elements.h:4528
virtual bool is_on_boundary() const
Definition: nodes.h:1373
Definition: oomph_definitions.h:222
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
Definition: cxx11_tensor_map.cpp:237
RealScalar s
Definition: level1_cplx_impl.h:130
double zero_fct(const double &time, const Vector< double > &x)
Definition: unstructured_two_d_curved.cc:112
double boundary_accel_0(const double &time, const Vector< double > &x)
Imposed boundary accel in r-direction.
Definition: unstructured_two_d_curved.cc:178
double boundary_accel_1(const double &time, const Vector< double > &x)
Imposed boundary accel in z-direction.
Definition: unstructured_two_d_curved.cc:193
double boundary_veloc_0(const double &time, const Vector< double > &x)
Imposed boundary velocity in r-direction.
Definition: unstructured_two_d_curved.cc:148
double boundary_displ_1(const double &time, const Vector< double > &x)
Imposed boundary displacement in z-direction.
Definition: unstructured_two_d_curved.cc:134
double boundary_veloc_1(const double &time, const Vector< double > &x)
Imposed boundary velocity in z-direction.
Definition: unstructured_two_d_curved.cc:163
double boundary_displ_0(const double &time, const Vector< double > &x)
Imposed boundary displacement in r-direction.
Definition: unstructured_two_d_curved.cc:119
list x
Definition: plotDoE.py:28
#define OOMPH_EXCEPTION_LOCATION
Definition: oomph_definitions.h:61
#define OOMPH_CURRENT_FUNCTION
Definition: oomph_definitions.h:86
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References ProblemParameters::boundary_accel_0(), ProblemParameters::boundary_accel_1(), ProblemParameters::boundary_displ_0(), ProblemParameters::boundary_displ_1(), ProblemParameters::boundary_veloc_0(), ProblemParameters::boundary_veloc_1(), oomph::CommandLineArgs::command_line_flag_has_been_set(), e(), calibrate::error, ProblemParameters::exact_soln(), f(), i, oomph::FaceElement::interpolated_x(), oomph::Node::is_on_boundary(), j, n, OOMPH_CURRENT_FUNCTION, OOMPH_EXCEPTION_LOCATION, oomph::FaceElement::outer_unit_normal(), s, oomph::Data::set_value(), plotDoE::x, and ProblemParameters::zero_fct().

◆ set_initial_condition()

template<class ELEMENT , class TIMESTEPPER >
void AxiPoroProblem< ELEMENT, TIMESTEPPER >::set_initial_condition ( )
inlinevirtual

Set the initial conditions.

Reimplemented from oomph::Problem.

552  {
553 
555  {
557  }
558  else
559  {
561  initial_value_fct(2);
563  initial_veloc_fct(2);
565  initial_accel_fct(2);
566 
567  // Assign values for analytical value, veloc and accel:
568  initial_value_fct[0]=&ProblemParameters::boundary_displ_0;
569  initial_value_fct[1]=&ProblemParameters::boundary_displ_1;
570 
571  initial_veloc_fct[0]=&ProblemParameters::boundary_veloc_0;
572  initial_veloc_fct[1]=&ProblemParameters::boundary_veloc_1;
573 
574  initial_accel_fct[0]=&ProblemParameters::boundary_accel_0;
575  initial_accel_fct[1]=&ProblemParameters::boundary_accel_1;
576 
577  TIMESTEPPER* timestepper_pt=dynamic_cast<TIMESTEPPER*>(time_stepper_pt());
578 
579  unsigned n_node=Bulk_mesh_pt->nnode();
580  for(unsigned n=0;n<n_node;n++)
581  {
582  Node *nod_pt=Bulk_mesh_pt->node_pt(n);
583  timestepper_pt->assign_initial_data_values(nod_pt,
584  initial_value_fct,
585  initial_veloc_fct,
586  initial_accel_fct);
587  }
588  }
589  }
void assign_initial_values_impulsive()
Definition: problem.cc:11499

References ProblemParameters::boundary_accel_0(), ProblemParameters::boundary_accel_1(), ProblemParameters::boundary_displ_0(), ProblemParameters::boundary_displ_1(), ProblemParameters::boundary_veloc_0(), ProblemParameters::boundary_veloc_1(), oomph::CommandLineArgs::command_line_flag_has_been_set(), and n.

Member Data Documentation

◆ Bulk_mesh_pt

template<class ELEMENT , class TIMESTEPPER >
TriangleMesh<ELEMENT>* AxiPoroProblem< ELEMENT, TIMESTEPPER >::Bulk_mesh_pt
private

Pointer to the "bulk" mesh.

◆ My_time_stepper_pt

template<class ELEMENT , class TIMESTEPPER >
TIMESTEPPER* AxiPoroProblem< ELEMENT, TIMESTEPPER >::My_time_stepper_pt
private

◆ Surface_mesh_pt

template<class ELEMENT , class TIMESTEPPER >
Mesh* AxiPoroProblem< ELEMENT, TIMESTEPPER >::Surface_mesh_pt
private

Mesh for traction/pressure elements.

◆ Trace_file

template<class ELEMENT , class TIMESTEPPER >
std::ofstream AxiPoroProblem< ELEMENT, TIMESTEPPER >::Trace_file
private

Trace file.


The documentation for this class was generated from the following file: