ChangingTOIParticle Class Reference
+ Inheritance diagram for ChangingTOIParticle:

Public Member Functions

MatrixSymmetric3D MtoS (Matrix3D M)
 
Matrix3D StoM (MatrixSymmetric3D M)
 
Matrix3D transpose (Matrix3D M)
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsAfterTimeStep () override
 A virtual function which allows to define operations to be executed after time step. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsAfterTimeStep () override
 A virtual function which allows to define operations to be executed after time step. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsAfterTimeStep () override
 A virtual function which allows to define operations to be executed after time step. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsAfterTimeStep () override
 A virtual function which allows to define operations to be executed after time step. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsAfterTimeStep () override
 A virtual function which allows to define operations to be executed after time step. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
 ChangingTOIParticle ()
 
void setClumpDamping (Mdouble damp)
 
void setClumpIndex (Mdouble index)
 
Mdouble getClumpMass ()
 
void setupInitialConditions () override
 This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here. More...
 
void actionsAfterTimeStep () override
 A virtual function which allows to define operations to be executed after time step. More...
 
- Public Member Functions inherited from Mercury3Dclump
 Mercury3Dclump ()
 
void computeInternalForce (BaseParticle *P1, BaseParticle *P2) override
 
void computeForcesDueToWalls (BaseParticle *pI, BaseWall *w) override
 
void computeAllForces () override
 
bool checkClumpForInteraction (BaseParticle &particle)
 
bool checkClumpForInteractionPeriodic (BaseParticle &particle)
 
- Public Member Functions inherited from Mercury3D
 Mercury3D ()
 This is the default constructor. All it does is set sensible defaults. More...
 
 Mercury3D (const DPMBase &other)
 Copy-constructor for creates an Mercury3D problem from an existing MD problem. More...
 
 Mercury3D (const Mercury3D &other)
 Copy-constructor. More...
 
void constructor ()
 Function that sets the SystemDimension and ParticleDimension to 3. More...
 
std::vector< BaseParticle * > hGridFindParticleContacts (const BaseParticle *obj) override
 Returns all particles that have a contact with a given particle. More...
 
- Public Member Functions inherited from MercuryBase
 MercuryBase ()
 This is the default constructor. It sets sensible defaults. More...
 
 ~MercuryBase () override
 This is the default destructor. More...
 
 MercuryBase (const MercuryBase &mercuryBase)
 Copy-constructor. More...
 
void constructor ()
 This is the actual constructor, it is called do both constructors above. More...
 
void hGridActionsBeforeTimeLoop () override
 This sets up the broad phase information, has to be done at this stage because it requires the particle size. More...
 
void hGridActionsBeforeTimeStep () override
 Performs all necessary actions before a time-step, like updating the particles and resetting all the bucket information, etc. More...
 
void read (std::istream &is, ReadOptions opt=ReadOptions::ReadAll) override
 Reads the MercuryBase from an input stream, for example a restart file. More...
 
void write (std::ostream &os, bool writeAllParticles=true) const override
 Writes all data into a restart file. More...
 
Mdouble getHGridCurrentMaxRelativeDisplacement () const
 Returns hGridCurrentMaxRelativeDisplacement_. More...
 
Mdouble getHGridTotalCurrentMaxRelativeDisplacement () const
 Returns hGridTotalCurrentMaxRelativeDisplacement_. More...
 
void setHGridUpdateEachTimeStep (bool updateEachTimeStep)
 Sets whether or not the HGrid must be updated every time step. More...
 
bool getHGridUpdateEachTimeStep () const final
 Gets whether or not the HGrid is updated every time step. More...
 
void setHGridMaxLevels (unsigned int HGridMaxLevels)
 Sets the maximum number of levels of the HGrid in this MercuryBase. More...
 
unsigned int getHGridMaxLevels () const
 Gets the maximum number of levels of the HGrid in this MercuryBase. More...
 
HGridMethod getHGridMethod () const
 Gets whether the HGrid in this MercuryBase is BOTTOMUP or TOPDOWN. More...
 
void setHGridMethod (HGridMethod hGridMethod)
 Sets the HGridMethod to either BOTTOMUP or TOPDOWN. More...
 
HGridDistribution getHGridDistribution () const
 Gets how the sizes of the cells of different levels are distributed. More...
 
void setHGridDistribution (HGridDistribution hGridDistribution)
 Sets how the sizes of the cells of different levels are distributed. More...
 
Mdouble getHGridCellOverSizeRatio () const
 Gets the ratio of the smallest cell over the smallest particle. More...
 
void setHGridCellOverSizeRatio (Mdouble cellOverSizeRatio)
 Sets the ratio of the smallest cell over the smallest particle. More...
 
bool hGridNeedsRebuilding ()
 Gets if the HGrid needs rebuilding before anything else happens. More...
 
virtual unsigned int getHGridTargetNumberOfBuckets () const
 Gets the desired number of buckets, which is the maximum of the number of particles and 10. More...
 
virtual Mdouble getHGridTargetMinInteractionRadius () const
 Gets the desired size of the smallest cells of the HGrid. More...
 
virtual Mdouble getHGridTargetMaxInteractionRadius () const
 Gets the desired size of the largest cells of the HGrid. More...
 
bool checkParticleForInteraction (const BaseParticle &P) final
 Checks if given BaseParticle has an interaction with a BaseWall or other BaseParticle. More...
 
bool checkParticleForInteractionLocal (const BaseParticle &P) final
 Checks if the given BaseParticle has an interaction with a BaseWall or other BaseParticles in a local domain. More...
 
virtual Mdouble userHGridCellSize (unsigned int level)
 Virtual function that enables inheriting classes to implement a function to let the user set the cell size of the HGrid. More...
 
void hGridInfo (std::ostream &os=std::cout) const
 Writes the info of the HGrid to the screen in a nice format. More...
 
- Public Member Functions inherited from DPMBase
void constructor ()
 A function which initialises the member variables to default values, so that the problem can be solved off the shelf; sets up a basic two dimensional problem which can be solved off the shelf. It is called in the constructor DPMBase(). More...
 
 DPMBase ()
 Constructor that calls the "void constructor()". More...
 
 DPMBase (const DPMBase &other)
 Copy constructor type-2. More...
 
virtual ~DPMBase ()
 virtual destructor More...
 
void autoNumber ()
 The autoNumber() function calls three functions: setRunNumber(), readRunNumberFromFile() and incrementRunNumberInFile(). More...
 
std::vector< intget1DParametersFromRunNumber (int size_x) const
 This turns a counter into 1 index, which is a useful feature for performing 1D parameter study. The index run from 1:size_x, while the study number starts at 0 (initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget2DParametersFromRunNumber (int size_x, int size_y) const
 This turns a counter into 2 indices which is a very useful feature for performing a 2D study. The indices run from 1:size_x and 1:size_y, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
std::vector< intget3DParametersFromRunNumber (int size_x, int size_y, int size_z) const
 This turns a counter into 3 indices, which is a useful feature for performing a 3D parameter study. The indices run from 1:size_x, 1:size_y and 1:size_z, while the study number starts at 0 ( initially the counter=1 in COUNTER_DONOTDEL) More...
 
int launchNewRun (const char *name, bool quick=false)
 This launches a code from within this code. Please pass the name of the code to run. More...
 
void setRunNumber (int runNumber)
 This sets the counter/Run number, overriding the defaults. More...
 
int getRunNumber () const
 This returns the current value of the counter (runNumber_) More...
 
virtual void decompose ()
 Sends particles from processorId to the root processor. More...
 
void solve ()
 The work horse of the code. More...
 
void initialiseSolve ()
 Beginning of the solve routine, before time stepping. More...
 
void finaliseSolve ()
 End of the solve routine, after time stepping. More...
 
virtual void computeOneTimeStep ()
 Performs everything needed for one time step, used in the time-loop of solve(). More...
 
void checkSettings ()
 Checks if the essentials are set properly to go ahead with solving the problem. More...
 
void forceWriteOutputFiles ()
 Writes output files immediately, even if the current time step was not meant to be written. Also resets the last saved time step. More...
 
virtual void writeOutputFiles ()
 Writes simulation data to all the main Mercury files: .data, .ene, .fstat, .xballs and .restart (see the Mercury website for more details regarding these files). More...
 
void solve (int argc, char *argv[])
 The work horse of the code. Can handle flags from the command line. More...
 
virtual void writeXBallsScript () const
 This writes a script which can be used to load the xballs problem to display the data just generated. More...
 
virtual Mdouble getInfo (const BaseParticle &P) const
 A virtual function that returns some user-specified information about a particle. More...
 
ParticleVtkWritergetVtkWriter () const
 
virtual void writeRestartFile ()
 Stores all the particle data for current save time step to a "restart" file, which is a file simply intended to store all the information necessary to "restart" a simulation from a given time step (see also MercuryDPM.org for more information on restart files). More...
 
void writeDataFile ()
 
void writeEneFile ()
 
void writeFStatFile ()
 
void fillDomainWithParticles (unsigned N=50)
 
bool readRestartFile (ReadOptions opt=ReadOptions::ReadAll)
 Reads all the particle data corresponding to a given, existing . restart file (for more details regarding restart files, refer to the training materials on the MercuryDPM website).Returns true if it is successful, false otherwise. More...
 
int readRestartFile (std::string fileName, ReadOptions opt=ReadOptions::ReadAll)
 The same as readRestartFile(bool), but also reads all the particle data corresponding to the current saved time step. More...
 
virtual BaseWallreadUserDefinedWall (const std::string &type) const
 Allows you to read in a wall defined in a Driver directory; see USER/Luca/ScrewFiller. More...
 
virtual void readOld (std::istream &is)
 Reads all data from a restart file, e.g. domain data and particle data; old version. More...
 
bool readDataFile (std::string fileName="", unsigned int format=0)
 This allows particle data to be reloaded from data files. More...
 
bool readParAndIniFiles (std::string fileName)
 Allows the user to read par.ini files (useful to read files produced by the MDCLR simulation code - external to MercuryDPM) More...
 
bool readNextDataFile (unsigned int format=0)
 Reads the next data file with default format=0. However, one can modify the format based on whether the particle data corresponds to 3D or 2D data- see Visualising data in xballs. More...
 
void readNextFStatFile ()
 Reads the next fstat file. More...
 
bool findNextExistingDataFile (Mdouble tMin, bool verbose=true)
 Finds and opens the next data file, if such a file exists. More...
 
bool readArguments (int argc, char *argv[])
 Can interpret main function input arguments that are passed by the driver codes. More...
 
bool checkParticleForInteractionLocalPeriodic (const BaseParticle &P)
 
void readSpeciesFromDataFile (bool read=true)
 
void importParticlesAs (ParticleHandler &particleHandler, InteractionHandler &interactionHandler, const ParticleSpecies *species)
 Copies particles, interactions assigning species from a local simulation to a global one. Useful for the creation of a cluster. More...
 
MERCURYDPM_DEPRECATED FilegetDataFile ()
 The non const version. Allows one to edit the File::dataFile. More...
 
MERCURYDPM_DEPRECATED FilegetEneFile ()
 The non const version. Allows to edit the File::eneFile. More...
 
MERCURYDPM_DEPRECATED FilegetFStatFile ()
 The non const version. Allows to edit the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED FilegetRestartFile ()
 The non const version. Allows to edit the File::restartFile. More...
 
MERCURYDPM_DEPRECATED FilegetStatFile ()
 The non const version. Allows to edit the File::statFile. More...
 
FilegetInteractionFile ()
 Return a reference to the file InteractionsFile. More...
 
MERCURYDPM_DEPRECATED const FilegetDataFile () const
 The const version. Does not allow for any editing of the File::dataFile. More...
 
MERCURYDPM_DEPRECATED const FilegetEneFile () const
 The const version. Does not allow for any editing of the File::eneFile. More...
 
MERCURYDPM_DEPRECATED const FilegetFStatFile () const
 The const version. Does not allow for any editing of the File::fStatFile. More...
 
MERCURYDPM_DEPRECATED const FilegetRestartFile () const
 The const version. Does not allow for any editing of the File::restartFile. More...
 
MERCURYDPM_DEPRECATED const FilegetStatFile () const
 The const version. Does not allow for any editing of the File::statFile. More...
 
const FilegetInteractionFile () const
 Returns a constant reference to an Interactions file. More...
 
const std::string & getName () const
 Returns the name of the file. Does not allow to change it though. More...
 
void setName (const std::string &name)
 Allows to set the name of all the files (ene, data, fstat, restart, stat) More...
 
void setName (const char *name)
 Calls setName(std::string) More...
 
void setSaveCount (unsigned int saveCount)
 Sets File::saveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setFileType (FileType fileType)
 Sets File::fileType_ for all files (ene, data, fstat, restart, stat) More...
 
void setOpenMode (std::fstream::openmode openMode)
 Sets File::openMode_ for all files (ene, data, fstat, restart, stat) More...
 
void resetFileCounter ()
 Resets the file counter for each file i.e. for ene, data, fstat, restart, stat) More...
 
void closeFiles ()
 Closes all files (ene, data, fstat, restart, stat) that were opened to read or write. More...
 
void setVTKOutputDirectory (const std::string &dir)
 Sets the output directory of the VTK files. More...
 
void setLastSavedTimeStep (unsigned int nextSavedTimeStep)
 Sets the next time step for all the files (ene, data, fstat, restart, stat) at which the data is to be written or saved. More...
 
Mdouble getTime () const
 Returns the current simulation time. More...
 
Mdouble getNextTime () const
 Returns the current simulation time. More...
 
unsigned int getNumberOfTimeSteps () const
 Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has undergone so far. More...
 
void setTime (Mdouble time)
 Sets a new value for the current simulation time. More...
 
void setTimeMax (Mdouble newTMax)
 Sets a new value for the maximum simulation duration. More...
 
Mdouble getTimeMax () const
 Returns the maximum simulation duration. More...
 
void setLogarithmicSaveCount (Mdouble logarithmicSaveCountBase)
 Sets File::logarithmicSaveCount_ for all files (ene, data, fstat, restart, stat) More...
 
void setNToWrite (int nToWrite)
 set the number of elements to write to the screen More...
 
int getNToWrite () const
 get the number of elements to write to the More...
 
void setRotation (bool rotation)
 Sets whether particle rotation is enabled or disabled. More...
 
bool getRotation () const
 Indicates whether particle rotation is enabled or disabled. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (FileType writeWallsVTK)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setWallsWriteVTK (bool)
 Sets whether walls are written into a VTK file. More...
 
MERCURYDPM_DEPRECATED void setInteractionsWriteVTK (bool)
 Sets whether interactions are written into a VTK file. More...
 
void setParticlesWriteVTK (bool writeParticlesVTK)
 Sets whether particles are written in a VTK file. More...
 
void setSuperquadricParticlesWriteVTK (bool writeSuperquadricParticlesVTK)
 
MERCURYDPM_DEPRECATED FileType getWallsWriteVTK () const
 Returns whether walls are written in a VTK file. More...
 
bool getParticlesWriteVTK () const
 Returns whether particles are written in a VTK file. More...
 
bool getSuperquadricParticlesWriteVTK () const
 
Mdouble getXMin () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin. More...
 
Mdouble getXMax () const
 If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax. More...
 
Mdouble getYMin () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin. More...
 
Mdouble getYMax () const
 If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax. More...
 
Mdouble getZMin () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin. More...
 
Mdouble getZMax () const
 If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax. More...
 
Mdouble getXCenter () const
 
Mdouble getYCenter () const
 
Mdouble getZCenter () const
 
Vec3D getCenter () const
 get center of domain More...
 
Vec3D getMin () const
 Returns the minimum coordinates of the problem domain. More...
 
Vec3D getMax () const
 Returns the maximum coordinates of the problem domain. More...
 
void setXMin (Mdouble newXMin)
 Sets the value of XMin, the lower bound of the problem domain in the x-direction. More...
 
void setYMin (Mdouble newYMin)
 Sets the value of YMin, the lower bound of the problem domain in the y-direction. More...
 
void setZMin (Mdouble newZMin)
 Sets the value of ZMin, the lower bound of the problem domain in the z-direction. More...
 
void setXMax (Mdouble newXMax)
 Sets the value of XMax, the upper bound of the problem domain in the x-direction. More...
 
void setYMax (Mdouble newYMax)
 Sets the value of YMax, the upper bound of the problem domain in the y-direction. More...
 
void setZMax (Mdouble newZMax)
 Sets the value of ZMax, the upper bound of the problem domain in the z-direction. More...
 
void setMax (const Vec3D &max)
 Sets the maximum coordinates of the problem domain. More...
 
void setMax (Mdouble, Mdouble, Mdouble)
 Sets the maximum coordinates of the problem domain. More...
 
void setDomain (const Vec3D &min, const Vec3D &max)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (const Vec3D &min)
 Sets the minimum coordinates of the problem domain. More...
 
void setMin (Mdouble, Mdouble, Mdouble)
 Sets the minimum coordinates of the problem domain. More...
 
void setTimeStep (Mdouble newDt)
 Sets a new value for the simulation time step. More...
 
Mdouble getTimeStep () const
 Returns the simulation time step. More...
 
void setNumberOfOMPThreads (int numberOfOMPThreads)
 Sets the number of omp threads. More...
 
int getNumberOfOMPThreads () const
 Returns the number of omp threads. More...
 
void setXBallsColourMode (int newCMode)
 Set the xballs output mode. More...
 
int getXBallsColourMode () const
 Get the xballs colour mode (CMode). More...
 
void setXBallsVectorScale (double newVScale)
 Set the scale of vectors in xballs. More...
 
double getXBallsVectorScale () const
 Returns the scale of vectors used in xballs. More...
 
void setXBallsAdditionalArguments (std::string newXBArgs)
 Set the additional arguments for xballs. More...
 
std::string getXBallsAdditionalArguments () const
 Returns the additional arguments for xballs. More...
 
void setXBallsScale (Mdouble newScale)
 Sets the scale of the view (either normal, zoom in or zoom out) to display in xballs. The default is fit to screen. More...
 
double getXBallsScale () const
 Returns the scale of the view in xballs. More...
 
void setGravity (Vec3D newGravity)
 Sets a new value for the gravitational acceleration. More...
 
Vec3D getGravity () const
 Returns the gravitational acceleration. More...
 
void setBackgroundDrag (Mdouble backgroundDrag)
 Simple access function to turn on a background drag. The force of particleVelocity*drag is applied (note, it allowed to be negative i.e. create energy) More...
 
const Mdouble getBackgroundDrag () const
 Return the background drag. More...
 
void setDimension (unsigned int newDim)
 Sets both the system dimensions and the particle dimensionality. More...
 
void setSystemDimensions (unsigned int newDim)
 Sets the system dimensionality. More...
 
unsigned int getSystemDimensions () const
 Returns the system dimensionality. More...
 
void setParticleDimensions (unsigned int particleDimensions)
 Sets the particle dimensionality. More...
 
unsigned int getParticleDimensions () const
 Returns the particle dimensionality. More...
 
std::string getRestartVersion () const
 This is to take into account for different Mercury versions. Returns the version of the restart file. More...
 
void setRestartVersion (std::string newRV)
 Sets restart_version. More...
 
bool getRestarted () const
 Returns the flag denoting if the simulation was restarted or not. More...
 
void setRestarted (bool newRestartedFlag)
 Allows to set the flag stating if the simulation is to be restarted or not. More...
 
bool getAppend () const
 Returns whether the "append" option is on or off. More...
 
void setAppend (bool newAppendFlag)
 Sets whether the "append" option is on or off. More...
 
Mdouble getElasticEnergy () const
 Returns the global elastic energy within the system. More...
 
Mdouble getKineticEnergy () const
 Returns the global kinetic energy stored in the system. More...
 
Mdouble getGravitationalEnergy (Vec3D origin={0, 0, 0}) const
 Returns the global gravitational potential energy stored relative to a user-defined origin in the system. Note, if no origin is specified the real origin i.e. (0,0,0) is taken. More...
 
Mdouble getRotationalEnergy () const
 Returns the global rotational energy stored in the system. More...
 
Mdouble getTotalEnergy () const
 
Mdouble getTotalMass () const
 JMFT: Return the total mass of the system, excluding fixed particles. More...
 
Vec3D getCentreOfMass () const
 JMFT: Return the centre of mass of the system, excluding fixed particles. More...
 
Vec3D getTotalMomentum () const
 JMFT: Return the total momentum of the system, excluding fixed particles. More...
 
double getCPUTime ()
 
double getWallTime ()
 
virtual void hGridInsertParticle (BaseParticle *obj UNUSED)
 
virtual void hGridUpdateParticle (BaseParticle *obj UNUSED)
 
virtual void hGridRemoveParticle (BaseParticle *obj UNUSED)
 
bool mpiIsInCommunicationZone (BaseParticle *particle)
 Checks if the position of the particle is in an mpi communication zone or not. More...
 
bool mpiInsertParticleCheck (BaseParticle *P)
 Function that checks if the mpi particle should really be inserted by the current domain. More...
 
void insertGhostParticle (BaseParticle *P)
 This function inserts a particle in the mpi communication boundaries. More...
 
void updateGhostGrid (BaseParticle *P)
 Checks if the Domain/periodic interaction distance needs to be updated and updates it accordingly. More...
 
virtual void gatherContactStatistics (unsigned int index1, int index2, Vec3D Contact, Mdouble delta, Mdouble ctheta, Mdouble fdotn, Mdouble fdott, Vec3D P1_P2_normal_, Vec3D P1_P2_tangential)
 //Not unsigned index because of possible wall collisions. More...
 
void setNumberOfDomains (std::vector< unsigned > direction)
 Sets the number of domains in x-,y- and z-direction. Required for parallel computations. More...
 
void splitDomain (DomainSplit domainSplit)
 
std::vector< unsignedgetNumberOfDomains ()
 returns the number of domains More...
 
DomaingetCurrentDomain ()
 Function that returns a pointer to the domain corresponding to the processor. More...
 
void removeOldFiles () const
 
void setMeanVelocity (Vec3D V_mean_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
void setMeanVelocityAndKineticEnergy (Vec3D V_mean_goal, Mdouble Ek_goal)
 This function will help you set a fixed kinetic energy and mean velocity in your system. More...
 
Mdouble getTotalVolume () const
 Get the total volume of the cuboid system. More...
 
Matrix3D getKineticStress () const
 Calculate the kinetic stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getStaticStress () const
 Calculate the static stress tensor in the system averaged over the whole volume. More...
 
Matrix3D getTotalStress () const
 Calculate the total stress tensor in the system averaged over the whole volume. More...
 
virtual void handleParticleRemoval (unsigned int id)
 Handles the removal of particles from the particleHandler. More...
 
virtual void handleParticleAddition (unsigned int id, BaseParticle *p)
 Handles the addition of particles to the particleHandler. More...
 
void writePythonFileForVTKVisualisation () const
 writes .py file for ParaView More...
 
void setWritePythonFileForVTKVisualisation (bool forceWritePythonFileForVTKVisualisation)
 
bool getWritePythonFileForVTKVisualisation () const
 
WallVTKWritergetWallVTKWriter ()
 

Public Attributes

Vec3D init_orientation = Vec3D(1,0,0)
 
Vec3D final_orientation = Vec3D(1,0,0)
 
Double2DVector inertia_profiles
 
Mdouble functional = 0
 
Mdouble progDuration = 0
 
Mdouble symDuration = 0
 
Mdouble baseAngVel = 0
 
Mdouble c_theta
 
Mdouble c_phi
 
DoubleVector angularMomentumLog
 
- Public Attributes inherited from DPMBase
SpeciesHandler speciesHandler
 A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc. More...
 
RNG random
 This is a random generator, often used for setting up the initial conditions etc... More...
 
ParticleHandler particleHandler
 An object of the class ParticleHandler, contains the pointers to all the particles created. More...
 
ParticleHandler paoloParticleHandler
 Fake particleHandler created by Paolo needed temporary by just Paolo. More...
 
WallHandler wallHandler
 An object of the class WallHandler. Contains pointers to all the walls created. More...
 
BoundaryHandler boundaryHandler
 An object of the class BoundaryHandler which concerns insertion and deletion of particles into or from regions. More...
 
PeriodicBoundaryHandler periodicBoundaryHandler
 Internal handler that deals with periodic boundaries, especially in a parallel build. More...
 
DomainHandler domainHandler
 An object of the class DomainHandler which deals with parallel code. More...
 
InteractionHandler interactionHandler
 An object of the class InteractionHandler. More...
 
CGHandler cgHandler
 Object of the class cgHandler. More...
 
File dataFile
 An instance of class File to handle in- and output into a .data file. More...
 
File fStatFile
 An instance of class File to handle in- and output into a .fstat file. More...
 
File eneFile
 An instance of class File to handle in- and output into a .ene file. More...
 
File restartFile
 An instance of class File to handle in- and output into a .restart file. More...
 
File statFile
 An instance of class File to handle in- and output into a .stat file. More...
 
File interactionFile
 File class to handle in- and output into .interactions file. This file hold information about interactions. More...
 
Time clock_
 record when the simulation started More...
 

Private Attributes

int clump_index
 
ClumpData data
 
Mdouble clump_mass
 
Mdouble clump_damping = 10
 
unsigned rotatingWallID = 0
 
CubeInsertionBoundaryinsertionBoundary
 

Additional Inherited Members

- Public Types inherited from DPMBase
enum class  ReadOptions : int { ReadAll , ReadNoInteractions , ReadNoParticlesAndInteractions }
 
enum class  DomainSplit {
  X , Y , Z , XY ,
  XZ , YZ , XYZ
}
 
- Static Public Member Functions inherited from DPMBase
static void incrementRunNumberInFile ()
 Increment the run Number (counter value) stored in the file_counter (COUNTER_DONOTDEL) by 1 and store the new value in the counter file. More...
 
static int readRunNumberFromFile ()
 Read the run number or the counter from the counter file (COUNTER_DONOTDEL) More...
 
static bool areInContact (const BaseParticle *pI, const BaseParticle *pJ)
 Checks if two particle are in contact or is there any positive overlap. More...
 
- Protected Member Functions inherited from Mercury3D
void hGridFindContactsWithinTargetCell (int x, int y, int z, unsigned int l)
 Finds contacts between particles in the target cell. More...
 
void hGridFindContactsWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj)
 Finds contacts between the BaseParticle and the target cell. More...
 
void computeWallForces (BaseWall *w) override
 Compute contacts with a wall. More...
 
void hGridFindParticlesWithTargetCell (int x, int y, int z, unsigned int l, BaseParticle *obj, std::vector< BaseParticle * > &list)
 Finds particles within target cell and stores them in a list. More...
 
void hGridGetInteractingParticleList (BaseParticle *obj, std::vector< BaseParticle * > &list) override
 Obtains all neighbour particles of a given object, obtained from the hgrid. More...
 
void computeInternalForces (BaseParticle *obj) override
 Finds contacts with the BaseParticle; avoids multiple checks. More...
 
bool hGridHasContactsInTargetCell (int x, int y, int z, unsigned int l, const BaseParticle *obj) const
 Tests if the BaseParticle has contacts with other Particles in the target cell. More...
 
bool hGridHasParticleContacts (const BaseParticle *obj) override
 Tests if a BaseParticle has any contacts in the HGrid. More...
 
void hGridRemoveParticle (BaseParticle *obj) override
 Removes a BaseParticle from the HGrid. More...
 
void hGridUpdateParticle (BaseParticle *obj) override
 Updates the cell (not the level) of a BaseParticle. More...
 
- Protected Member Functions inherited from MercuryBase
void hGridRebuild ()
 This sets up the parameters required for the contact model. More...
 
void hGridInsertParticle (BaseParticle *obj) final
 Inserts a single Particle to current grid. More...
 
void hGridUpdateMove (BaseParticle *iP, Mdouble move) final
 Computes the relative displacement of the given BaseParticle and updates the currentMaxRelativeDisplacement_ accordingly. More...
 
void hGridActionsBeforeIntegration () override
 Resets the currentMaxRelativeDisplacement_ to 0. More...
 
void hGridActionsAfterIntegration () override
 This function has to be called before integrateBeforeForceComputation. More...
 
HGridgetHGrid ()
 Gets the HGrid used by this problem. More...
 
const HGridgetHGrid () const
 Gets the HGrid used by this problem, const version. More...
 
bool readNextArgument (int &i, int argc, char *argv[]) override
 Reads the next command line argument. More...
 
- Protected Member Functions inherited from DPMBase
virtual void computeExternalForces (BaseParticle *)
 Computes the external forces, such as gravity, acting on particles. More...
 
virtual void actionsOnRestart ()
 A virtual function where the users can add extra code which is executed only when the code is restarted. More...
 
virtual void actionsBeforeTimeLoop ()
 A virtual function. Allows one to carry out any operations before the start of the time loop. More...
 
virtual void actionsBeforeTimeStep ()
 A virtual function which allows to define operations to be executed before the new time step. More...
 
virtual void computeAdditionalForces ()
 A virtual function which allows to define operations to be executed prior to the OMP force collect. More...
 
virtual void actionsAfterSolve ()
 A virtual function which allows to define operations to be executed after the solve(). More...
 
void writeVTKFiles () const
 
virtual void outputXBallsData (std::ostream &os) const
 This function writes the location of the walls and particles in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void outputXBallsDataParticle (unsigned int i, unsigned int format, std::ostream &os) const
 This function writes out the particle locations into an output stream in a format the XBalls program can read. For more information on the XBalls program, see Visualising data in xballs. More...
 
virtual void writeEneHeader (std::ostream &os) const
 Writes a header with a certain format for ENE file. More...
 
virtual void writeFstatHeader (std::ostream &os) const
 Writes a header with a certain format for FStat file. More...
 
virtual void writeEneTimeStep (std::ostream &os) const
 Write the global kinetic, potential energy, etc. in the system. More...
 
virtual void initialiseStatistics ()
 
virtual void outputStatistics ()
 
void gatherContactStatistics ()
 
virtual void processStatistics (bool)
 
virtual void finishStatistics ()
 
virtual void integrateBeforeForceComputation ()
 Update particles' and walls' positions and velocities before force computation. More...
 
virtual void integrateAfterForceComputation ()
 Update particles' and walls' positions and velocities after force computation. More...
 
virtual void checkInteractionWithBoundaries ()
 There are a range of boundaries one could implement depending on ones' problem. This methods checks for interactions between particles and such range of boundaries. See BaseBoundary.h and all the boundaries in the Boundaries folder. More...
 
void setFixedParticles (unsigned int n)
 Sets a number, n, of particles in the particleHandler as "fixed particles". More...
 
virtual void printTime () const
 Displays the current simulation time and the maximum simulation duration. More...
 
virtual bool continueSolve () const
 A virtual function for deciding whether to continue the simulation, based on a user-specified criterion. More...
 
void outputInteractionDetails () const
 Displays the interaction details corresponding to the pointer objects in the interaction handler. More...
 
bool isTimeEqualTo (Mdouble time) const
 Checks whether the input variable "time" is the current time in the simulation. More...
 
void removeDuplicatePeriodicParticles ()
 Removes periodic duplicate Particles. More...
 
void checkAndDuplicatePeriodicParticles ()
 For simulations using periodic boundaries, checks and adds particles when necessary into the particle handler. See DPMBase.cc and PeriodicBoundary.cc for more details. More...
 
void performGhostParticleUpdate ()
 When the Verlet scheme updates the positions and velocities of particles, ghost particles will need an update as wel. Their status will also be updated accordingly. More...
 
void deleteGhostParticles (std::set< BaseParticle * > &particlesToBeDeleted)
 
void synchroniseParticle (BaseParticle *, unsigned fromProcessor=0)
 
void performGhostVelocityUpdate ()
 updates the final time-step velocity of the ghost particles More...
 
void disableSoftStop ()
 This prevents the initialisation of the soft stop feature. More...
 
void discontinueSolve ()
 This discontinues the solve loop after the current time step is finished. More...
 

Constructor & Destructor Documentation

◆ ChangingTOIParticle() [1/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit
46  {
47  setGravity(Vec3D(0.0, 0.0, 0.0));
48  setName("ChangingTOI");
49  setXBallsAdditionalArguments("-solidf -v0");
50  setXMax(f_max);
51  setYMax(f_max);
52  setZMax(f_max);
53  setXMin(f_min);
54  setYMin(f_min);
55  setZMin(f_min);
58  }
Mdouble f_max
Definition: ChangingTOI.cpp:18
Mdouble f_min
Definition: ChangingTOI.cpp:18
void LoadClumps(ClumpData &data, bool VERBOSE=false)
Definition: ClumpInput.h:191
Mdouble clump_mass
Definition: ChangingTOI.cpp:234
ClumpData data
Definition: ChangingTOI.cpp:233
int clump_index
Definition: ChangingTOI.cpp:232
void setYMin(Mdouble newYMin)
Sets the value of YMin, the lower bound of the problem domain in the y-direction.
Definition: DPMBase.cc:1025
void setName(const std::string &name)
Allows to set the name of all the files (ene, data, fstat, restart, stat)
Definition: DPMBase.cc:400
void setYMax(Mdouble newYMax)
Sets the value of YMax, the upper bound of the problem domain in the y-direction.
Definition: DPMBase.cc:1182
void setZMin(Mdouble newZMin)
Sets the value of ZMin, the lower bound of the problem domain in the z-direction.
Definition: DPMBase.cc:1049
void setXBallsAdditionalArguments(std::string newXBArgs)
Set the additional arguments for xballs.
Definition: DPMBase.cc:1338
void setXMax(Mdouble newXMax)
Sets the value of XMax, the upper bound of the problem domain in the x-direction.
Definition: DPMBase.cc:1156
void setZMax(Mdouble newZMax)
Sets the value of ZMax, the upper bound of the problem domain in the z-direction.
Definition: DPMBase.cc:1208
void setXMin(Mdouble newXMin)
Sets the value of XMin, the lower bound of the problem domain in the x-direction.
Definition: DPMBase.cc:1001
void setGravity(Vec3D newGravity)
Sets a new value for the gravitational acceleration.
Definition: DPMBase.cc:1374
Definition: Kernel/Math/Vector.h:30
DoubleVector mass
Definition: ClumpInput.h:47

References clump_index, clump_mass, data, f_max, f_min, LoadClumps(), ClumpData::mass, DPMBase::setGravity(), DPMBase::setName(), DPMBase::setXBallsAdditionalArguments(), DPMBase::setXMax(), DPMBase::setXMin(), DPMBase::setYMax(), DPMBase::setYMin(), DPMBase::setZMax(), and DPMBase::setZMin().

◆ ChangingTOIParticle() [2/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit
62  {
63  setGravity(Vec3D(0.0, 0.0, -10.0));
64  setName("Domino");
65  setXBallsAdditionalArguments("-solidf -v0");
66  setXMax(D.x_max);
67  setYMax(D.y_max);
68  setZMax(D.z_max);
69  setXMin(D.x_min);
70  setYMin(D.y_min);
71  setZMin(D.z_min);
72  }
dominoes D
Definition: Domino.cpp:55
Mdouble z_min
Definition: Domino.cpp:33
Mdouble z_max
Definition: Domino.cpp:34
Mdouble x_max
Definition: Domino.cpp:28
Mdouble y_max
Definition: Domino.cpp:31
Mdouble x_min
Definition: Domino.cpp:27
Mdouble y_min
Definition: Domino.cpp:30

References D, DPMBase::setGravity(), DPMBase::setName(), DPMBase::setXBallsAdditionalArguments(), DPMBase::setXMax(), DPMBase::setXMin(), DPMBase::setYMax(), DPMBase::setYMin(), DPMBase::setZMax(), DPMBase::setZMin(), dominoes::x_max, dominoes::x_min, dominoes::y_max, dominoes::y_min, dominoes::z_max, and dominoes::z_min.

◆ ChangingTOIParticle() [3/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit
22  {
23  setGravity(Vec3D(0.0, 0.0, -10.0));
24  setName("Gomboc");
25  setXBallsAdditionalArguments("-solidf -v0");
26  setXMax(2*f_max);
27  setYMax(2*f_max);
28  setZMax(f_max);
29  setXMin(2*f_min);
30  setYMin(2*f_min);
31  setZMin(f_min);
33  setClumpIndex(0);
35  }
Mdouble f_max
Definition: Gomboc.cpp:15
Mdouble f_min
Definition: Gomboc.cpp:15
void setClumpIndex(Mdouble index)
Definition: ChangingTOI.cpp:62

References clump_index, clump_mass, data, f_max, f_min, LoadClumps(), ClumpData::mass, setClumpIndex(), DPMBase::setGravity(), DPMBase::setName(), DPMBase::setXBallsAdditionalArguments(), DPMBase::setXMax(), DPMBase::setXMin(), DPMBase::setYMax(), DPMBase::setYMin(), DPMBase::setZMax(), and DPMBase::setZMin().

◆ ChangingTOIParticle() [4/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit
22  {
23  setGravity(Vec3D(0.0, 0.0, -10.0));
24  setName("Rattleback");
25  setXBallsAdditionalArguments("-solidf -v0");
26  setXMax(2*f_max);
27  setYMax(2*f_max);
28  setZMax(f_max);
29  setXMin(2*f_min);
30  setYMin(2*f_min);
31  setZMin(f_min);
33  setClumpIndex(0);
35  }
Mdouble f_max
Definition: Rattleback.cpp:15
Mdouble f_min
Definition: Rattleback.cpp:15

References clump_index, clump_mass, data, f_max, f_min, LoadClumps(), ClumpData::mass, setClumpIndex(), DPMBase::setGravity(), DPMBase::setName(), DPMBase::setXBallsAdditionalArguments(), DPMBase::setXMax(), DPMBase::setXMin(), DPMBase::setYMax(), DPMBase::setYMin(), DPMBase::setZMax(), and DPMBase::setZMin().

◆ ChangingTOIParticle() [5/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit
40  {
41  setGravity(Vec3D(0,-9.8,0));
42  // Set name of output files
43  setName("RotatingDrumClumps");
44  setXBallsAdditionalArguments("-solidf -v0");
45  // Set domain size
48  // Output files: wall-vtu
49 
51  setClumpIndex(2);
53  }
Mdouble f_max
Definition: RotatingDrumClumps.cpp:16
Mdouble f_min
Definition: RotatingDrumClumps.cpp:16
void setMin(const Vec3D &min)
Sets the minimum coordinates of the problem domain.
Definition: DPMBase.cc:1109
void setMax(const Vec3D &max)
Sets the maximum coordinates of the problem domain.
Definition: DPMBase.cc:1073

References clump_index, clump_mass, data, f_max, f_min, LoadClumps(), ClumpData::mass, setClumpIndex(), DPMBase::setGravity(), DPMBase::setMax(), DPMBase::setMin(), DPMBase::setName(), and DPMBase::setXBallsAdditionalArguments().

◆ ChangingTOIParticle() [6/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit

◆ ChangingTOIParticle() [7/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit

◆ ChangingTOIParticle() [8/8]

ChangingTOIParticle::ChangingTOIParticle ( )
inlineexplicit
33  {
34  setGravity(Vec3D(0.0, 0.0, -0.0));
35  setName("TGas");
36  setXBallsAdditionalArguments("-solidf -v0");
37  setXMax(f_max);
38  setYMax(f_max);
39  setZMax(f_max); // Unbounded domain
40  setXMin(f_min);
41  setYMin(f_min);
42  setZMin(f_min);
45 
46  }
Mdouble f_max
Definition: TGas.cpp:16
Mdouble f_min
Definition: TGas.cpp:16

References clump_index, clump_mass, data, f_max, f_min, LoadClumps(), ClumpData::mass, DPMBase::setGravity(), DPMBase::setName(), DPMBase::setXBallsAdditionalArguments(), DPMBase::setXMax(), DPMBase::setXMin(), DPMBase::setYMax(), DPMBase::setYMin(), DPMBase::setZMax(), and DPMBase::setZMin().

Member Function Documentation

◆ actionsAfterTimeStep() [1/6]

void ChangingTOIParticle::actionsAfterTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed after time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

115  {
116  MatrixSymmetric3D cInertia;
117  MatrixSymmetric3D inertiaRate;
118  MatrixSymmetric3D fInertia;
119  fInertia.XX = inertia_profiles[inertia_profiles.size()-1][1];
120  fInertia.YY = inertia_profiles[inertia_profiles.size()-1][2];
121  fInertia.ZZ = inertia_profiles[inertia_profiles.size()-1][3];
122  fInertia.XY = 0;
123  fInertia.XZ = 0;
124  fInertia.YZ = 0;
125 
126  for (std::vector<BaseParticle*>::iterator it= particleHandler.begin(); it!=particleHandler.end(); ++it){
127  if ((*it)->isClump()) {
128  // Get Principal directions/rotation matrix
129  Matrix3D Q = static_cast<ClumpParticle*>(*it)->getRotationMatrix();
130  Matrix3D Qt = transpose(Q);
131 
132 
133  // Prescribe particle TOI (specified in inertia_profiles array) for every moment of simulation
134  int ind = (int) floor(inertia_profiles.size()*(getTime()/progDuration));
135 
136 
137  if (ind < inertia_profiles.size()-1) {
138  cInertia.XX = inertia_profiles[ind][1];
139  cInertia.YY = inertia_profiles[ind][2];
140  cInertia.ZZ = inertia_profiles[ind][3];
141  cInertia.XY = 0;
142  cInertia.XZ = 0;
143  cInertia.YZ = 0;
144 
145  inertiaRate.XX = inertia_profiles[ind][4];
146  inertiaRate.YY = inertia_profiles[ind][5];
147  inertiaRate.ZZ = inertia_profiles[ind][6];
148  inertiaRate.XY = 0;
149  inertiaRate.XZ = 0;
150  inertiaRate.YZ = 0;
151 
152  MatrixSymmetric3D rotatedCInertia = MtoS(Q * (StoM(cInertia) * Qt));
153  static_cast<ClumpParticle *>(*it)->setInitInertia(rotatedCInertia);
154 
155 
156  // Add extra torques - I^{dot} * omega
157  Vec3D angVel = (*it)->getAngularVelocity();
158 
159  Matrix3D S = Matrix3D(0, -angVel.Z, angVel.Y, angVel.Z, 0, -angVel.X, -angVel.Y, angVel.X, 0);
160  Matrix3D St = transpose(S);
161  //MatrixSymmetric3D rotatedInertiaRate = MtoS( Q * StoM(inertiaRate) * Qt +
162  // S * StoM(rotatedCInertia) * Qt +
163  // Q * StoM(rotatedCInertia) * St);
164  MatrixSymmetric3D rotatedInertiaRate = MtoS( Q * StoM(inertiaRate) * Qt);
165 
166  Vec3D TorqueDueToRate = rotatedInertiaRate * angVel;
167  static_cast<ClumpParticle *>(*it)->setTorque(-TorqueDueToRate);
168 
169  // Store angular momentum (for validation purposes)
170  angularMomentumLog.push_back((rotatedCInertia * angVel).getLength());
171  }
172 
173  if (ind == inertia_profiles.size()-1){ // The last step of control program
174 
175  // Ensure no torques and static TOI at the final part of the simulation
176  static_cast<ClumpParticle*>(*it)->setTorque(Vec3D(0,0,0));
177  MatrixSymmetric3D rotatedFInertia = MtoS(Q * (StoM(fInertia) * Qt));
178  static_cast<ClumpParticle*>(*it)->setInitInertia(rotatedFInertia);
179 
180  // Compute functional (has to be done once in the end of simulation)
181  Vec3D angVel = (*it)->getAngularVelocity();
182 
183  Vec3D e1 = Vec3D(1,0,0); // Cartesian axes
184  Vec3D e2 = Vec3D(0,1,0);
185  Vec3D e3 = Vec3D(0,0,1);
186 
187  Vec3D n1 = Q * Vec3D(1,0,0); // principal axes orientations
188  Vec3D n2 = Q * Vec3D(0,1,0);
189  Vec3D n3 = Q * Vec3D(0,0,1);
190 
191  Vec3D w = angVel / angVel.getLength(); // angular velocity
192 
193  c_theta = acos(Vec3D::dot(n3, w));
194  Vec3D n_phi = n1 * Vec3D::dot(n1, w) + n2 * Vec3D::dot(n2, w);
195  n_phi = n_phi / n_phi.getLength();
196  c_phi = atan2(Vec3D::dot(n2, n_phi), Vec3D::dot(n1, n_phi));
197 
199 
200  Mdouble f_theta = acos(Vec3D::dot(e3, f));
201  Vec3D e_phi = e1 * Vec3D::dot(e1, f) + e2 * Vec3D::dot(e2, f);
202  e_phi = e_phi / e_phi.getLength();
203  Mdouble f_phi = atan2(Vec3D::dot(e2, e_phi), Vec3D::dot(e1, e_phi));
204 
206  Vec3D k2 = Vec3D(sin(f_theta) * cos(f_phi), sin(f_theta) * sin(f_phi), cos(f_theta));
207 
208  functional = acos(Vec3D::dot(k1, k2));
209 
210 
211 
212  }
213  }
214  }
215 
217  }
AnnoyingScalar cos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:136
AnnoyingScalar atan2(const AnnoyingScalar &y, const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:139
AnnoyingScalar acos(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:138
AnnoyingScalar sin(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:137
MatrixXf Q
Definition: HouseholderQR_householderQ.cpp:1
RowVector3d w
Definition: Matrix_resize_int.cpp:3
std::vector< int > ind
Definition: Slicing_stdvector_cxx11.cpp:1
const std::vector< T * >::const_iterator begin() const
Gets the begin of the const_iterator over all Object in this BaseHandler.
Definition: BaseHandler.h:698
const std::vector< T * >::const_iterator end() const
Gets the end of the const_iterator over all BaseBoundary in this BaseHandler.
Definition: BaseHandler.h:712
void setTorque(const Vec3D &torque)
Sets the torque on this BaseInteractable.
Definition: BaseInteractable.h:140
DoubleVector angularMomentumLog
Definition: ChangingTOI.cpp:229
Mdouble functional
Definition: ChangingTOI.cpp:223
Mdouble c_theta
Definition: ChangingTOI.cpp:227
Matrix3D transpose(Matrix3D M)
Definition: ChangingTOI.cpp:43
Matrix3D StoM(MatrixSymmetric3D M)
Definition: ChangingTOI.cpp:42
Mdouble progDuration
Definition: ChangingTOI.cpp:224
Double2DVector inertia_profiles
Definition: ChangingTOI.cpp:222
MatrixSymmetric3D MtoS(Matrix3D M)
Definition: ChangingTOI.cpp:41
Vec3D final_orientation
Definition: ChangingTOI.cpp:221
Mdouble c_phi
Definition: ChangingTOI.cpp:228
Definition: ClumpParticle.h:20
Matrix3D getRotationMatrix() const
Definition: ClumpParticle.h:149
void setInitInertia(MatrixSymmetric3D inertia)
Definition: ClumpParticle.cc:191
Mdouble getTime() const
Returns the current simulation time.
Definition: DPMBase.cc:799
ParticleHandler particleHandler
An object of the class ParticleHandler, contains the pointers to all the particles created.
Definition: DPMBase.h:1443
virtual void actionsAfterTimeStep()
A virtual function which allows to define operations to be executed after time step.
Definition: DPMBase.cc:1867
Implementation of a 3D matrix.
Definition: Kernel/Math/Matrix.h:17
Implementation of a 3D symmetric matrix.
Definition: MatrixSymmetric.h:16
Mdouble ZZ
Definition: MatrixSymmetric.h:21
Mdouble YY
Definition: MatrixSymmetric.h:21
Mdouble XZ
Definition: MatrixSymmetric.h:21
Mdouble XY
Definition: MatrixSymmetric.h:21
Mdouble XX
The six distinctive matrix elements.
Definition: MatrixSymmetric.h:21
Mdouble YZ
Definition: MatrixSymmetric.h:21
Mdouble Y
Definition: Kernel/Math/Vector.h:45
Mdouble Z
Definition: Kernel/Math/Vector.h:45
Mdouble X
the vector components
Definition: Kernel/Math/Vector.h:45
static Mdouble getLength(const Vec3D &a)
Calculates the length of a Vec3D: .
Definition: Vector.cc:350
static Mdouble dot(const Vec3D &a, const Vec3D &b)
Calculates the dot product of two Vec3D: .
Definition: Vector.cc:56
static int f(const TensorMap< Tensor< int, 3 > > &tensor)
Definition: cxx11_tensor_map.cpp:237
return int(ret)+1
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bfloat16 floor(const bfloat16 &a)
Definition: BFloat16.h:643
double St
Strouhal number.
Definition: elastic_two_layer_interface_axisym.cc:66
@ S
Definition: quadtree.h:62

References acos(), DPMBase::actionsAfterTimeStep(), angularMomentumLog, atan2(), BaseHandler< T >::begin(), c_phi, c_theta, cos(), Vec3D::dot(), BaseHandler< T >::end(), f(), final_orientation, Eigen::bfloat16_impl::floor(), functional, Vec3D::getLength(), ClumpParticle::getRotationMatrix(), DPMBase::getTime(), ind, inertia_profiles, int(), MtoS(), DPMBase::particleHandler, progDuration, Q, oomph::QuadTreeNames::S, ClumpParticle::setInitInertia(), BaseInteractable::setTorque(), sin(), Global_Physical_Variables::St, StoM(), transpose(), w, Vec3D::X, MatrixSymmetric3D::XX, MatrixSymmetric3D::XY, MatrixSymmetric3D::XZ, Vec3D::Y, MatrixSymmetric3D::YY, MatrixSymmetric3D::YZ, Vec3D::Z, and MatrixSymmetric3D::ZZ.

◆ actionsAfterTimeStep() [2/6]

void ChangingTOIParticle::actionsAfterTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed after time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

154  {
155 
156  // Measurement of the propagation velocity of a Domino wave
157 
158  for (std::vector<BaseParticle*>::iterator it= particleHandler.begin(); it!=particleHandler.end(); ++it){
159  if ((*it)->isClump()) {
160  //D_num += (int) static_cast<Clump*>(*it)->getDzhanibekovParticle();
161 
162  if ((D.started == false)&&((*it)->getPosition().X > D.margin + D.N_ini*D.S_dom - 0.001)&&( (*it)->getVelocity().getLength()>0.001 ))
163  {
164  D.started = true;
165  D.T1 = getTime();
166  }
167 
168  if ((D.started == true)&&(D.finished == false)&&((*it)->getPosition().X > D.margin + D.N_fin*D.S_dom - 0.001)&&( (*it)->getVelocity().getLength()>0.001 ))
169  {
170  D.finished = true;
171  D.T2 = getTime();
172  }
173  }
174  }
175 
176  }
bool finished
Definition: Domino.cpp:46
Mdouble T2
Definition: Domino.cpp:48
int N_ini
Definition: Domino.cpp:43
bool started
Definition: Domino.cpp:45
Mdouble T1
Definition: Domino.cpp:47
Mdouble margin
Definition: Domino.cpp:18
int N_fin
Definition: Domino.cpp:44
Mdouble S_dom
Definition: Domino.cpp:24

References BaseHandler< T >::begin(), D, BaseHandler< T >::end(), dominoes::finished, DPMBase::getTime(), dominoes::margin, dominoes::N_fin, dominoes::N_ini, DPMBase::particleHandler, dominoes::S_dom, dominoes::started, dominoes::T1, and dominoes::T2.

◆ actionsAfterTimeStep() [3/6]

void ChangingTOIParticle::actionsAfterTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed after time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

96  {
98  for (std::vector<BaseParticle*>::iterator it= particleHandler.begin(); it!=particleHandler.end(); ++it){
99  if ((*it)->isClump()) {
100 
101  std::cout<<"Saving timestep "<<getNumberOfTimeSteps() <<std::endl;
102 
103  // Add velocity to log
104  std::ofstream funct("ClumpSeq.txt", std::ios_base::app | std::ios_base::out);
105  funct << getNumberOfTimeSteps() << " "
106  << static_cast<ClumpParticle*>(*it)->getPosition() << " "
107  << static_cast<ClumpParticle*>(*it)->getPrincipalDirections_e1() << " "
108  << static_cast<ClumpParticle*>(*it)->getPrincipalDirections_e2() << " "
109  << static_cast<ClumpParticle*>(*it)->getPrincipalDirections_e3() << " "
110  <<"\n";
111  funct.close();
112 
113  }
114  }
115 
116  }
117  }
int SAVECOUNT
Definition: Gomboc.cpp:16
const Vec3D & getPosition() const
Returns the position of this BaseInteractable.
Definition: BaseInteractable.h:197
Vec3D getPrincipalDirections_e2() const
Definition: ClumpParticle.h:126
Vec3D getPrincipalDirections_e3() const
Definition: ClumpParticle.h:130
Vec3D getPrincipalDirections_e1() const
Definition: ClumpParticle.h:121
unsigned int getNumberOfTimeSteps() const
Returns the current counter of time-steps, i.e. the number of time-steps that the simulation has unde...
Definition: DPMBase.cc:815
std::ofstream out("Result.txt")

References BaseHandler< T >::begin(), BaseHandler< T >::end(), DPMBase::getNumberOfTimeSteps(), BaseInteractable::getPosition(), ClumpParticle::getPrincipalDirections_e1(), ClumpParticle::getPrincipalDirections_e2(), ClumpParticle::getPrincipalDirections_e3(), out(), DPMBase::particleHandler, and SAVECOUNT.

◆ actionsAfterTimeStep() [4/6]

void ChangingTOIParticle::actionsAfterTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed after time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

96  {
98  for (std::vector<BaseParticle*>::iterator it= particleHandler.begin(); it!=particleHandler.end(); ++it){
99  if ((*it)->isClump()) {
100 
101  std::cout<<"Saving timestep "<<getNumberOfTimeSteps() <<std::endl;
102 
103  // Add velocity to log
104  std::ofstream funct("ClumpSeq.txt", std::ios_base::app | std::ios_base::out);
105  funct << getNumberOfTimeSteps() << " "
106  << static_cast<ClumpParticle*>(*it)->getPosition() << " "
107  << static_cast<ClumpParticle*>(*it)->getPrincipalDirections_e1() << " "
108  << static_cast<ClumpParticle*>(*it)->getPrincipalDirections_e2() << " "
109  << static_cast<ClumpParticle*>(*it)->getPrincipalDirections_e3() << " "
110  <<"\n";
111  funct.close();
112 
113  }
114  }
115 
116  }
117  }
int SAVECOUNT
Definition: Rattleback.cpp:16

References BaseHandler< T >::begin(), BaseHandler< T >::end(), DPMBase::getNumberOfTimeSteps(), BaseInteractable::getPosition(), ClumpParticle::getPrincipalDirections_e1(), ClumpParticle::getPrincipalDirections_e2(), ClumpParticle::getPrincipalDirections_e3(), out(), DPMBase::particleHandler, and SAVECOUNT.

◆ actionsAfterTimeStep() [5/6]

void ChangingTOIParticle::actionsAfterTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed after time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

130  {
131  Vec3D angularVelocity = Vec3D(0,0,1.0/12.0*constants::pi);
132  for (const auto wall : wallHandler) {
133  if (wall->getGroupId()==rotatingWallID) {
134  wall->setAngularVelocity(angularVelocity);
135  }
136  }
137  }
unsigned rotatingWallID
Definition: RotatingDrumClumps.cpp:33
WallHandler wallHandler
An object of the class WallHandler. Contains pointers to all the walls created.
Definition: DPMBase.h:1453
const Mdouble pi
Definition: ExtendedMath.h:23

References constants::pi, rotatingWallID, and DPMBase::wallHandler.

◆ actionsAfterTimeStep() [6/6]

void ChangingTOIParticle::actionsAfterTimeStep ( )
inlineoverridevirtual

A virtual function which allows to define operations to be executed after time step.

no implementation but can be overridden in its derived classes.

Reimplemented from DPMBase.

174  {
175  int D_num = 0;
176  for (std::vector<BaseParticle*>::iterator it= particleHandler.begin(); it!=particleHandler.end(); ++it){
177  if ((*it)->isClump()) {
178  D_num += (int) static_cast<ClumpParticle*>(*it)->getDzhanibekovParticle();
179  }
180  }
181  D_h.push_back(D_num);
182  }
std::vector< int > D_h
Definition: TGas.cpp:27
bool getDzhanibekovParticle()
Definition: ClumpParticle.h:258

References BaseHandler< T >::begin(), D_h, BaseHandler< T >::end(), ClumpParticle::getDzhanibekovParticle(), int(), and DPMBase::particleHandler.

◆ getClumpMass() [1/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
64 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [2/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
78 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [3/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
41 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [4/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
41 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [5/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
59 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [6/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
40 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [7/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
40 {return clump_mass;}

References clump_mass.

◆ getClumpMass() [8/8]

Mdouble ChangingTOIParticle::getClumpMass ( )
inline
52 {return clump_mass;}

References clump_mass.

◆ MtoS()

MatrixSymmetric3D ChangingTOIParticle::MtoS ( Matrix3D  M)
inline
41 { return MatrixSymmetric3D(M.XX, M.XY, M.XZ, M.YY, M.YZ, M.ZZ);}
The matrix class, also used for vectors and row-vectors.
Definition: Eigen/Eigen/src/Core/Matrix.h:186

Referenced by actionsAfterTimeStep().

◆ setClumpDamping() [1/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
60 { clump_damping = damp;}
Mdouble clump_damping
Definition: ChangingTOI.cpp:235

References clump_damping.

◆ setClumpDamping() [2/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
74 { clump_damping = damp;}

References clump_damping.

◆ setClumpDamping() [3/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
37 { clump_damping = damp;}

References clump_damping.

◆ setClumpDamping() [4/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
37 { clump_damping = damp;}

References clump_damping.

◆ setClumpDamping() [5/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
55 { clump_damping = damp;}

References clump_damping.

◆ setClumpDamping() [6/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
36 { clump_damping = damp;}

References clump_damping.

◆ setClumpDamping() [7/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
36 { clump_damping = damp;}

References clump_damping.

◆ setClumpDamping() [8/8]

void ChangingTOIParticle::setClumpDamping ( Mdouble  damp)
inline
48 { clump_damping = damp;}

References clump_damping.

◆ setClumpIndex() [1/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
62 { clump_index = index;}

References clump_index.

Referenced by ChangingTOIParticle(), and setupInitialConditions().

◆ setClumpIndex() [2/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
76 { clump_index = index;}

References clump_index.

◆ setClumpIndex() [3/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
39 { clump_index = index;}

References clump_index.

◆ setClumpIndex() [4/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
39 { clump_index = index;}

References clump_index.

◆ setClumpIndex() [5/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
57 { clump_index = index;}

References clump_index.

◆ setClumpIndex() [6/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
38 { clump_index = index;}

References clump_index.

◆ setClumpIndex() [7/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
38 { clump_index = index;}

References clump_index.

◆ setClumpIndex() [8/8]

void ChangingTOIParticle::setClumpIndex ( Mdouble  index)
inline
50 { clump_index = index;}

References clump_index.

◆ setupInitialConditions() [1/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

67  {
68  // Generate single clump
70  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to ClumpParticle
71  p0.setClump();
72  p0.setRadius(0.5);
73  p0.setPosition(Vec3D(0, 0, 0));
74 
75  // Pebble particles are used for visualisation purposes only
76  // (sphere/arrow glyphs are employed in Paraview to visualize the corresponding directions)
77  // Pebble's inertial properties are not employed in calculations
78  p0.addPebble(Vec3D(0,0,0),1);
79  p0.addPebble(Vec3D(1,0,0),3.5);
80  p0.addPebble(Vec3D(-1,0,0),4);
81  p0.addPebble(Vec3D(0,1,0),2.5);
82  p0.addPebble(Vec3D(0,-1,0),3);
83  p0.addPebble(Vec3D(0,0,1),1.5);
84  p0.addPebble(Vec3D(0,0,-1),2);
85 
86  // Extra direction markers (for Paraview arrow glyphs)
87  p0.addPebble(Vec3D(10e-8,10e-8,10e-8),2); // Marker of point 4
88  p0.addPebble(Vec3D(10e-8,0,10e-8),2); // marker of point 3
89  p0.addPebble(Vec3D(0,10e-8,10e-8),2); // marker of point 2
90  p0.addPebble(Vec3D(10e-8,10e-8,0),2); // marker of point 1
91  p0.addPebble(Vec3D(10e-8,0,0),2); // marker of point 6
92  p0.addPebble(Vec3D(0,10e-8,0),2); // marker of point 7
93  p0.addPebble(Vec3D(0,0,10e-8),2); // marker of point 5
94  p0.addPebble(Vec3D(0,0,-10e-8),2); // marker of point 8
95 
96 
97  p0.setPrincipalDirections(Matrix3D(1,0,0, 0,1,0, 0,0,1));
98 
99  MatrixSymmetric3D cInertia;
100  cInertia.XX = inertia_profiles[0][1];
101  cInertia.YY = inertia_profiles[0][2];
102  cInertia.ZZ = inertia_profiles[0][3];
103  cInertia.XY = 0;
104  cInertia.XZ = 0;
105  cInertia.YZ = 0;
106  p0.setInitInertia(cInertia);
107 
108  p0.setClumpMass(5);
109 
110  p0.setAngularVelocity(baseAngVel * init_orientation);
112  }
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Vector3f p0
Definition: MatrixBase_all.cpp:2
std::enable_if<!std::is_pointer< U >::value, U * >::type copyAndAddObject(const U &object)
Creates a copy of a Object and adds it to the BaseHandler.
Definition: BaseHandler.h:360
T * getObject(const unsigned int id)
Gets a pointer to the Object at the specified index in the BaseHandler.
Definition: BaseHandler.h:621
Mdouble baseAngVel
Definition: ChangingTOI.cpp:226
Vec3D init_orientation
Definition: ChangingTOI.cpp:220
SpeciesHandler speciesHandler
A handler to that stores the species type i.e. LinearViscoelasticSpecies, etc.
Definition: DPMBase.h:1433

References baseAngVel, BaseHandler< T >::copyAndAddObject(), e(), BaseHandler< T >::getObject(), inertia_profiles, init_orientation, p0, DPMBase::particleHandler, DPMBase::speciesHandler, MatrixSymmetric3D::XX, MatrixSymmetric3D::XY, MatrixSymmetric3D::XZ, MatrixSymmetric3D::YY, MatrixSymmetric3D::YZ, and MatrixSymmetric3D::ZZ.

◆ setupInitialConditions() [2/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

81  {
83  // Dominoes
84  for (int part = 0; part<D.N_dom; part++) {
86  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
87  p0.setClump();
88  p0.setRadius(D.R_peb);
89 
90  for (int i = 0; i < 2*D.m_peb; i++) {
91  for (int j = 0; j < 2*D.n_peb; j++) {
92  for (int k = 0; k < 2*D.k_peb; k++) {
93 
94  p0.addPebble(Vec3D(-D.S_peb * D.m_peb + (i + 0.5) * D.S_peb,
95  -D.S_peb * D.n_peb + (j + 0.5) * D.S_peb,
96  -D.S_peb * D.k_peb + (k + 0.5) * D.S_peb), D.R_peb);
97 
98  }}}
99  p0.setPrincipalDirections(
100  Matrix3D(1, 0, 0,
101  0, 1, 0,
102  0, 0, 1));
103 
104  std::cout<<"I_xx = "<<D.I_xx<<std::endl;
105  std::cout<<"I_yy = "<<D.I_yy<<std::endl;
106 
107 
108  p0.setInitInertia(
109  MatrixSymmetric3D(D.I_xx, 0, 0,
110  D.I_yy, 0,
111  D.I_zz));
112  p0.setClumpMass(1 * D.mass);
113 
114  p0.setDamping(clump_damping);
115 
116 
117 
118  Vec3D pos = Vec3D(D.margin + part*D.S_dom,
119  0,
120  0);
121 
122 
123 
124  p0.setPosition(pos);
125 
126  Vec3D angVel(0,0,0);
127  Vec3D vel(0,0,0);
128 
129  p0.setAngularVelocity(angVel);
130  p0.setVelocity(vel);
132  }
133 
134  // Cue
135 
137  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
138  p0.setClump();
139  p0.setRadius(D.R_cue);
140  p0.addPebble(Vec3D(0, 0, 0), D.R_cue);
141  p0.setPosition(Vec3D(0.9*D.margin, 0, D.S_peb*(D.k_peb-0.5))); // sets particle position
142  p0.setVelocity(Vec3D(D.Vel_cue, 0., 0.));// sets particle velocity
144 
145  // Rectangular box
146  wallHandler.clear();
147  InfiniteWall w0;
149  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
151 
152  }
int i
Definition: BiCGSTAB_step_by_step.cpp:9
virtual void clear()
Empties the whole BaseHandler by removing all Objects and setting all other variables to 0.
Definition: BaseHandler.h:536
void setSpecies(const ParticleSpecies *species)
Defines the species of the current wall.
Definition: BaseWall.cc:148
void setParticlesWriteVTK(bool writeParticlesVTK)
Sets whether particles are written in a VTK file.
Definition: DPMBase.cc:933
Mdouble getZMin() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMin() returns ZMin.
Definition: DPMBase.h:628
A infinite wall fills the half-space {point: (position_-point)*normal_<=0}.
Definition: InfiniteWall.h:27
void set(Vec3D normal, Vec3D point)
Defines a standard wall, given an outward normal vector s.t. normal*x=normal*point for all x of the w...
Definition: InfiniteWall.cc:97
char char char int int * k
Definition: level2_impl.h:374
Mdouble I_zz
Definition: Domino.cpp:40
int m_peb
Definition: Domino.cpp:25
Mdouble I_xx
Definition: Domino.cpp:38
int k_peb
Definition: Domino.cpp:25
Mdouble S_peb
Definition: Domino.cpp:23
int N_dom
Definition: Domino.cpp:19
Mdouble R_peb
Definition: Domino.cpp:20
Mdouble R_cue
Definition: Domino.cpp:21
Mdouble mass
Definition: Domino.cpp:37
Mdouble Vel_cue
Definition: Domino.cpp:22
int n_peb
Definition: Domino.cpp:25
Mdouble I_yy
Definition: Domino.cpp:39
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2

References BaseHandler< T >::clear(), clump_damping, BaseHandler< T >::copyAndAddObject(), D, BaseHandler< T >::getObject(), DPMBase::getZMin(), i, dominoes::I_xx, dominoes::I_yy, dominoes::I_zz, j, k, dominoes::k_peb, dominoes::m_peb, dominoes::margin, dominoes::mass, dominoes::N_dom, dominoes::n_peb, p0, DPMBase::particleHandler, dominoes::R_cue, dominoes::R_peb, dominoes::S_dom, dominoes::S_peb, InfiniteWall::set(), DPMBase::setParticlesWriteVTK(), BaseWall::setSpecies(), DPMBase::speciesHandler, dominoes::Vel_cue, and DPMBase::wallHandler.

◆ setupInitialConditions() [3/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

44  {
45  // Generate gomboc
46  setClumpIndex(2);
48  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
49  p0.setClump();
50  // DoubleVector upds = UniformRandomPDs();
51  DoubleVector upds = {0, 0.707107, 0.707107, 0, -0.707107, 0.707107, -1, 0, 0};
52  data = RotateClump(data, clump_index, upds); // here you can try different seeds
53  p0.setRadius(data.pebblesR[clump_index][0]);
54  Vec3D pos = Vec3D(0, 0, -1.2);
55  p0.setPosition(pos);
56  for (int j = 0; j < data.pebblesR[clump_index].size(); j++) {
57  p0.addPebble(Vec3D(data.pebblesX[clump_index][j],
61  }
62  p0.setPrincipalDirections(
66  p0.setInitInertia(
69  data.toi[clump_index][8]));
70  p0.setClumpMass(data.mass[clump_index]);
71  double mag = 0;
72  p0.setAngularVelocity(Vec3D(0,0,0));
73  p0.setVelocity(Vec3D(0,0,0));
74 
75  p0.setDamping(clump_damping);
77 
78  // Rectangular box
80  InfiniteWall w0;
82  w0.set(Vec3D(-1.0, 0.0, 0.0), Vec3D(getXMin(), 0, 0));
84  w0.set(Vec3D(1.0, 0.0, 0.0), Vec3D(getXMax(), 0, 0));
86  w0.set(Vec3D(0.0, -1.0, 0.0), Vec3D(0, getYMin(), 0));
88  w0.set(Vec3D(0.0, 1.0, 0.0), Vec3D(0, getYMax(), 0));
90  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
92  w0.set(Vec3D(0.0, 0.0, 1.0), Vec3D(0, 0, getZMax()));
94  }
std::vector< double > DoubleVector
loads clump configuration
Definition: ClumpInput.h:26
ClumpData RotateClump(ClumpData data, int clump_index, DoubleVector new_pd)
Definition: ClumpInput.h:228
Mdouble getXMin() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMin() returns XMin.
Definition: DPMBase.h:603
Mdouble getXMax() const
If the length of the problem domain in x-direction is XMax - XMin, then getXMax() returns XMax.
Definition: DPMBase.h:610
Mdouble getYMin() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMin() returns YMin.
Definition: DPMBase.h:616
Mdouble getYMax() const
If the length of the problem domain in y-direction is YMax - YMin, then getYMax() returns XMax.
Definition: DPMBase.h:622
Mdouble getZMax() const
If the length of the problem domain in z-direction is ZMax - ZMin, then getZMax() returns ZMax.
Definition: DPMBase.h:634
Double2DVector toi
Definition: ClumpInput.h:53
Double2DVector pd
Definition: ClumpInput.h:54
Double2DVector pebblesX
Definition: ClumpInput.h:48
Double2DVector pebblesZ
Definition: ClumpInput.h:50
Double2DVector pebblesY
Definition: ClumpInput.h:49
Double2DVector pebblesR
Definition: ClumpInput.h:51

References BaseHandler< T >::clear(), clump_damping, clump_index, BaseHandler< T >::copyAndAddObject(), data, BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), j, ClumpData::mass, p0, DPMBase::particleHandler, ClumpData::pd, ClumpData::pebblesR, ClumpData::pebblesX, ClumpData::pebblesY, ClumpData::pebblesZ, RotateClump(), InfiniteWall::set(), setClumpIndex(), BaseWall::setSpecies(), DPMBase::speciesHandler, ClumpData::toi, and DPMBase::wallHandler.

◆ setupInitialConditions() [4/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

44  {
45  // Generate rattleback
46  setClumpIndex(3);
48  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
49  p0.setClump();
50  //DoubleVector upds = UniformRandomPDs();
51  DoubleVector upds = {1, 0, 0, 0, 0, 1, 0, -1, 0};
52  data = RotateClump(data, clump_index, upds); // here you can try different seeds
53  p0.setRadius(data.pebblesR[clump_index][0]);
54  Vec3D pos = Vec3D(0, 0, -94);
55  p0.setPosition(pos);
56  for (int j = 0; j < data.pebblesR[clump_index].size(); j++) {
57  p0.addPebble(Vec3D(data.pebblesX[clump_index][j],
61  }
62  p0.setPrincipalDirections(
66  p0.setInitInertia(
69  data.toi[clump_index][8]));
70  p0.setClumpMass(data.mass[clump_index]);
71  double mag = 0;
72  p0.setAngularVelocity(Vec3D(0,0,-0.7));
73  p0.setVelocity(Vec3D(0,0,0));
74 
75  p0.setDamping(clump_damping);
77 
78  // Rectangular box
80  InfiniteWall w0;
82  w0.set(Vec3D(-1.0, 0.0, 0.0), Vec3D(getXMin(), 0, 0));
84  w0.set(Vec3D(1.0, 0.0, 0.0), Vec3D(getXMax(), 0, 0));
86  w0.set(Vec3D(0.0, -1.0, 0.0), Vec3D(0, getYMin(), 0));
88  w0.set(Vec3D(0.0, 1.0, 0.0), Vec3D(0, getYMax(), 0));
90  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
92  w0.set(Vec3D(0.0, 0.0, 1.0), Vec3D(0, 0, getZMax()));
94  }

References BaseHandler< T >::clear(), clump_damping, clump_index, BaseHandler< T >::copyAndAddObject(), data, BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), j, ClumpData::mass, p0, DPMBase::particleHandler, ClumpData::pd, ClumpData::pebblesR, ClumpData::pebblesX, ClumpData::pebblesY, ClumpData::pebblesZ, RotateClump(), InfiniteWall::set(), setClumpIndex(), BaseWall::setSpecies(), DPMBase::speciesHandler, ClumpData::toi, and DPMBase::wallHandler.

◆ setupInitialConditions() [5/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

62  {
63 
64  setClumpIndex(2);
65  int N_created = 0;
66  for (int part = 0; part<N_att; part++) {
67 
69  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
70  p0.setClump();
71  ClumpData rdata = RotateClump(data, clump_index, UniformRandomPDs()); // Rotate clump arbitrarily
72 
73 
74 
75  p0.setRadius(rdata.pebblesR[clump_index][0]);
76 
77  for (int j = 0; j < rdata.pebblesR[clump_index].size(); j++) {
78  p0.addPebble(Vec3D(rdata.pebblesX[clump_index][j],
79  rdata.pebblesY[clump_index][j],
80  rdata.pebblesZ[clump_index][j]),
81  rdata.pebblesR[clump_index][j]);
82  }
83  p0.setPrincipalDirections(
84  Matrix3D(rdata.pd[clump_index][0], rdata.pd[clump_index][1], rdata.pd[clump_index][2],
85  rdata.pd[clump_index][3], rdata.pd[clump_index][4], rdata.pd[clump_index][5],
86  rdata.pd[clump_index][6], rdata.pd[clump_index][7], rdata.pd[clump_index][8]));
87  p0.setInitInertia(
88  MatrixSymmetric3D(rdata.toi[clump_index][0], rdata.toi[clump_index][1], rdata.toi[clump_index][2],
89  rdata.toi[clump_index][4], rdata.toi[clump_index][5],
90  rdata.toi[clump_index][8]));
91  p0.setClumpMass(rdata.mass[clump_index]);
92 
93  p0.setDamping(clump_damping);
94 
95 
96  Vec3D pos = Vec3D(f_min + margin + RandomDouble(f_max - f_min - 2 * margin),
99 
100  p0.setPosition(pos);
101 
102  Vec3D angVel = Vec3D(av_min + RandomDouble(av_max - av_min),
105 
109 
110  p0.setAngularVelocity(angVel);
111  p0.setVelocity(vel);
112 
113 
116  N_created++;
117  }
118  }
119  std::cout<<"N_created = "<<N_created<<std::endl;
120 
121  // Introduce a rotating wall
122  Mdouble wallScaleFactor = 1e-3; // Scale used in the stl file (mm)
123  Vec3D shift = {0,0,0};
124  Vec3D velocity = {0,0,0};
125  rotatingWallID = wallHandler.readTriangleWall(getMercuryDPMSourceDir() + "/Drivers/Clump/RotatingDrum/RotatingDrum.stl",speciesHandler.getObject(0), wallScaleFactor,shift,velocity,Vec3D(0,0,0));
126  wallHandler.setWriteVTK(true);
127 
128  }
double RandomDouble(double Max)
Definition: ClumpInput.h:34
DoubleVector UniformRandomPDs()
Definition: ClumpInput.h:243
const std::string getMercuryDPMSourceDir()
This file is used for generating definitions that give access to CMakeVariables from within a cpp fil...
Definition: Configuration/CMakeDefinitions.cc:10
Mdouble av_max
Definition: RotatingDrumClumps.cpp:21
Mdouble z_margin
Definition: RotatingDrumClumps.cpp:18
int N_att
Definition: RotatingDrumClumps.cpp:24
Mdouble tv_min
Definition: RotatingDrumClumps.cpp:22
Mdouble z_shift
Definition: RotatingDrumClumps.cpp:16
Mdouble margin
Definition: RotatingDrumClumps.cpp:17
Mdouble av_min
Definition: RotatingDrumClumps.cpp:20
Mdouble tv_max
Definition: RotatingDrumClumps.cpp:23
bool checkClumpForInteractionPeriodic(BaseParticle &particle)
Definition: Mercury3DClump.h:112
void setWriteVTK(FileType)
Sets whether walls are written into a VTK file.
Definition: WallHandler.cc:445
unsigned readTriangleWall(std::string filename, ParticleSpecies *species, Mdouble scaleFactor=1, Vec3D centerOfRotation={0, 0, 0}, Vec3D velocity={0, 0, 0}, Vec3D angularVelocity={0, 0, 0})
Reads triangulated walls from vtk or stl files, and converts them into a set of TriangleWalls.
Definition: WallHandler.cc:319
double velocity(const double &t)
Angular velocity as function of time t.
Definition: jeffery_orbit.cc:107
Definition: ClumpInput.h:42

References av_max, av_min, Mercury3Dclump::checkClumpForInteractionPeriodic(), clump_damping, clump_index, BaseHandler< T >::copyAndAddObject(), data, e(), f_max, f_min, getMercuryDPMSourceDir(), BaseHandler< T >::getObject(), j, margin, ClumpData::mass, N_att, p0, DPMBase::particleHandler, ClumpData::pd, ClumpData::pebblesR, ClumpData::pebblesX, ClumpData::pebblesY, ClumpData::pebblesZ, RandomDouble(), WallHandler::readTriangleWall(), RotateClump(), rotatingWallID, setClumpIndex(), WallHandler::setWriteVTK(), DPMBase::speciesHandler, ClumpData::toi, tv_max, tv_min, UniformRandomPDs(), Jeffery_Solution::velocity(), DPMBase::wallHandler, z_margin, and z_shift.

◆ setupInitialConditions() [6/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

43  {
44  // Generate single clump
45  setClumpIndex(0);
47  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
48  p0.setClump();
49  // data = RotateClump(data, clump_index, UniformRandomPDs()); // Rotate clump arbitrarily
50  p0.setRadius(data.pebblesR[clump_index][0]);
51  Vec3D pos = Vec3D(0, 0, 5);
52  p0.setPosition(pos);
53  for (int j = 0; j < data.pebblesR[clump_index].size(); j++) {
54  p0.addPebble(Vec3D(data.pebblesX[clump_index][j],
58  }
59  p0.setPrincipalDirections(
63  p0.setInitInertia(
66  data.toi[clump_index][8]));
67  std::cout<<"CLUMP MASS set = "<<data.mass[clump_index]<<std::endl;
68  p0.setClumpMass(data.mass[clump_index]);
69  p0.setAngularVelocity(Vec3D(0,5,0));
70  p0.setVelocity(Vec3D(4,0,10));
71 
72  std::cout<<"CLUMP MASS get = "<<p0.getMass()<<std::endl;
73  p0.setDamping(clump_damping);
75 
76  // Rectangular box
78  InfiniteWall w0;
80  w0.set(Vec3D(-1.0, 0.0, 0.0), Vec3D(getXMin(), 0, 0));
82  w0.set(Vec3D(1.0, 0.0, 0.0), Vec3D(getXMax(), 0, 0));
84  w0.set(Vec3D(0.0, -1.0, 0.0), Vec3D(0, getYMin(), 0));
86  w0.set(Vec3D(0.0, 1.0, 0.0), Vec3D(0, getYMax(), 0));
88  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
90  w0.set(Vec3D(0.0, 0.0, 1.0), Vec3D(0, 0, getZMax()));
92  }

References BaseHandler< T >::clear(), clump_damping, clump_index, BaseHandler< T >::copyAndAddObject(), data, BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), j, ClumpData::mass, p0, DPMBase::particleHandler, ClumpData::pd, ClumpData::pebblesR, ClumpData::pebblesX, ClumpData::pebblesY, ClumpData::pebblesZ, InfiniteWall::set(), setClumpIndex(), BaseWall::setSpecies(), DPMBase::speciesHandler, ClumpData::toi, and DPMBase::wallHandler.

◆ setupInitialConditions() [7/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

43  {
44  // Generate single clump
45  setClumpIndex(1);
47  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
48  p0.setClump();
49  DoubleVector urpds = {0.707, 0.707, 0, -0.707, 0.707, 0, 0, 0, 1};
50  // DoubleVector urpds = UniformRandomPDs();
51  Vec3D angVel = 2 * Vec3D( urpds[0], urpds[1], urpds[2]);
52  data = RotateClump(data, clump_index, urpds); // Rotate clump arbitrarily
53  p0.setRadius(data.pebblesR[clump_index][0]);
54  Vec3D pos = Vec3D(0, 0, 0);
55  p0.setPosition(pos);
56 
57  //p0.setInitPrincipalDirections(
58  // Matrix3D(data.pd[clump_index][0], data.pd[clump_index][1], data.pd[clump_index][2],
59  // data.pd[clump_index][3], data.pd[clump_index][4], data.pd[clump_index][5],
60  // data.pd[clump_index][6], data.pd[clump_index][7], data.pd[clump_index][8]));
61 
62  p0.setPrincipalDirections(
66  p0.setInitInertia(
69  data.toi[clump_index][8]));
70 
71 
72  for (int j = 0; j < data.pebblesR[clump_index].size(); j++) {
73  p0.addPebble(Vec3D(data.pebblesX[clump_index][j],
77  }
78 
79  std::cout<<"CLUMP MASS set = "<<data.mass[clump_index]<<std::endl;
80  p0.setClumpMass(data.mass[clump_index]);
81  p0.setAngularVelocity(angVel);
82 
83  std::cout<<"CLUMP MASS get = "<<p0.getMass()<<std::endl;
84  p0.setDamping(clump_damping);
86 
87 
88  // Rectangular box
90  InfiniteWall w0;
92  w0.set(Vec3D(-1.0, 0.0, 0.0), Vec3D(getXMin(), 0, 0));
94  w0.set(Vec3D(1.0, 0.0, 0.0), Vec3D(getXMax(), 0, 0));
96  w0.set(Vec3D(0.0, -1.0, 0.0), Vec3D(0, getYMin(), 0));
98  w0.set(Vec3D(0.0, 1.0, 0.0), Vec3D(0, getYMax(), 0));
100  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
102  w0.set(Vec3D(0.0, 0.0, 1.0), Vec3D(0, 0, getZMax()));
104  }

References BaseHandler< T >::clear(), clump_damping, clump_index, BaseHandler< T >::copyAndAddObject(), data, BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), j, ClumpData::mass, p0, DPMBase::particleHandler, ClumpData::pd, ClumpData::pebblesR, ClumpData::pebblesX, ClumpData::pebblesY, ClumpData::pebblesZ, RotateClump(), InfiniteWall::set(), setClumpIndex(), BaseWall::setSpecies(), DPMBase::speciesHandler, ClumpData::toi, and DPMBase::wallHandler.

◆ setupInitialConditions() [8/8]

void ChangingTOIParticle::setupInitialConditions ( )
inlineoverridevirtual

This function allows to set the initial conditions for our problem to be solved, by default particle locations are randomly set. Remember particle properties must also be defined here.

A virtual function with no implementation but can be overridden.

Todo:
I (Anthony) wants to change this to be an external function. This has a lot of advantages especially when using copy-constructors. This is a major change and will break other codes, so therefore has to be done carefully.

This sets up the particles initial conditions it is as you expect the user to override this. By default the particles are randomly distributed

Reimplemented from DPMBase.

55  {
57 
58  /* Double periodic + bottom wall + unlimited top
59  auto per_x = boundaryHandler.copyAndAddObject(new PeriodicBoundary);
60  per_x->set(Vec3D(1, 0, 0), getXMin(), getXMax());
61  auto per_y = boundaryHandler.copyAndAddObject(new PeriodicBoundary);
62  per_y->set(Vec3D(0, 1, 0), getYMin(), getYMax());
63  wallHandler.clear();
64  InfiniteWall w0;
65  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
66  wallHandler.copyAndAddObject(w0);
67  */
68 
69  /* Rectangular box
70  wallHandler.clear();
71  InfiniteWall w0;
72  w0.setSpecies(speciesHandler.getObject(0));
73  w0.set(Vec3D(-1.0, 0.0, 0.0), Vec3D(getXMin(), 0, 0));
74  wallHandler.copyAndAddObject(w0);
75  w0.set(Vec3D(1.0, 0.0, 0.0), Vec3D(getXMax(), 0, 0));
76  wallHandler.copyAndAddObject(w0);
77  w0.set(Vec3D(0.0, -1.0, 0.0), Vec3D(0, getYMin(), 0));
78  wallHandler.copyAndAddObject(w0);
79  w0.set(Vec3D(0.0, 1.0, 0.0), Vec3D(0, getYMax(), 0));
80  wallHandler.copyAndAddObject(w0);
81  w0.set(Vec3D(0.0, 0.0, -1.0), Vec3D(0, 0, getZMin()));
82  wallHandler.copyAndAddObject(w0);
83  w0.set(Vec3D(0.0, 0.0, 1.0), Vec3D(0, 0, getZMax()));
84  wallHandler.copyAndAddObject(w0);
85  */
86 
87 
88  // Periodic box
90  per_x->set(Vec3D(1, 0, 0), getXMin(), getXMax());
91 
93  per_y->set(Vec3D(0, 1, 0), getYMin(), getYMax());
94 
96  per_z->set(Vec3D(0, 0, 1), getZMin(), getZMax());
97 
98 
99  /*
100  SphericalParticle p0;
101  p0.setSpecies(speciesHandler.getObject(0));
102  p0.setRadius(1); // sets particle radius
103  p0.setPosition(Vec3D(0., 0., 0.)); // sets particle position
104  p0.setVelocity(Vec3D(0., 0., 0.));// sets particle velocity
105  particleHandler.copyAndAddObject(p0);
106  */
107 
108 
109  // Generate a dense packing of Clumps
110  setClumpIndex(1);
111  int N_created = 0;
112  for (int part = 0; part<N_att; part++) {
113 
115  p0.setSpecies(speciesHandler.getObject(0)); // Assign the material type to Clump 1
116  p0.setClump();
117  ClumpData rdata = RotateClump(data, clump_index, UniformRandomPDs()); // Rotate clump arbitrarily
118 
119 
120 
121  p0.setRadius(rdata.pebblesR[clump_index][0]);
122 
123  for (int j = 0; j < rdata.pebblesR[clump_index].size(); j++) {
124  p0.addPebble(Vec3D(rdata.pebblesX[clump_index][j],
125  rdata.pebblesY[clump_index][j],
126  rdata.pebblesZ[clump_index][j]),
127  rdata.pebblesR[clump_index][j]);
128  }
129  p0.setPrincipalDirections(
130  Matrix3D(rdata.pd[clump_index][0], rdata.pd[clump_index][1], rdata.pd[clump_index][2],
131  rdata.pd[clump_index][3], rdata.pd[clump_index][4], rdata.pd[clump_index][5],
132  rdata.pd[clump_index][6], rdata.pd[clump_index][7], rdata.pd[clump_index][8]));
133  p0.setInitInertia(
134  MatrixSymmetric3D(rdata.toi[clump_index][0], rdata.toi[clump_index][1], rdata.toi[clump_index][2],
135  rdata.toi[clump_index][4], rdata.toi[clump_index][5],
136  rdata.toi[clump_index][8]));
137  p0.setClumpMass(rdata.mass[clump_index]);
138 
139  p0.setDamping(clump_damping);
140 
141 
142  Vec3D pos = Vec3D(f_min + margin + RandomDouble(f_max - f_min - 2 * margin),
143  f_min + margin + RandomDouble(f_max - f_min - 2 * margin),
144  f_min + margin + RandomDouble(f_max - f_min - 2 * margin));
145 
146  p0.setPosition(pos);
147 
148  Vec3D angVel = Vec3D(av_min + RandomDouble(av_max - av_min),
151 
155 
156  // No motion with zero initial conditions
157  //angVel = Vec3D(0,0,0);
158  //vel = Vec3D(0,0,0);
159 
160  p0.setAngularVelocity(angVel);
161  p0.setVelocity(vel);
162 
163 
166  N_created++;
167  }
168  }
169 
170  std::cout<<"Number of particles created: "<<N_created<<std::endl;
171 
172  }
Mdouble av_max
Definition: TGas.cpp:21
int N_att
Definition: TGas.cpp:26
Mdouble tv_min
Definition: TGas.cpp:23
Mdouble margin
Definition: TGas.cpp:17
Mdouble av_min
Definition: TGas.cpp:20
Mdouble tv_max
Definition: TGas.cpp:24
BoundaryHandler boundaryHandler
An object of the class BoundaryHandler which concerns insertion and deletion of particles into or fro...
Definition: DPMBase.h:1458
Defines a pair of periodic walls. Inherits from BaseBoundary.
Definition: PeriodicBoundary.h:20

References av_max, av_min, DPMBase::boundaryHandler, Mercury3Dclump::checkClumpForInteractionPeriodic(), clump_damping, clump_index, BaseHandler< T >::copyAndAddObject(), data, f_max, f_min, BaseHandler< T >::getObject(), DPMBase::getXMax(), DPMBase::getXMin(), DPMBase::getYMax(), DPMBase::getYMin(), DPMBase::getZMax(), DPMBase::getZMin(), j, margin, ClumpData::mass, N_att, p0, DPMBase::particleHandler, ClumpData::pd, ClumpData::pebblesR, ClumpData::pebblesX, ClumpData::pebblesY, ClumpData::pebblesZ, RandomDouble(), RotateClump(), setClumpIndex(), DPMBase::setParticlesWriteVTK(), DPMBase::speciesHandler, ClumpData::toi, tv_max, tv_min, and UniformRandomPDs().

◆ StoM()

Matrix3D ChangingTOIParticle::StoM ( MatrixSymmetric3D  M)
inline
42 { return Matrix3D(M.XX, M.XY, M.XZ, M.XY, M.YY, M.YZ, M.XZ, M.YZ, M.ZZ);}

Referenced by actionsAfterTimeStep().

◆ transpose()

Matrix3D ChangingTOIParticle::transpose ( Matrix3D  M)
inline
43 { return Matrix3D(M.XX, M.YX, M.ZX, M.XY, M.YY, M.ZY, M.XZ, M.YZ, M.ZZ);}

Referenced by actionsAfterTimeStep().

Member Data Documentation

◆ angularMomentumLog

DoubleVector ChangingTOIParticle::angularMomentumLog

Referenced by actionsAfterTimeStep().

◆ baseAngVel

Mdouble ChangingTOIParticle::baseAngVel = 0

Referenced by setupInitialConditions().

◆ c_phi

Mdouble ChangingTOIParticle::c_phi

Referenced by actionsAfterTimeStep().

◆ c_theta

Mdouble ChangingTOIParticle::c_theta

Referenced by actionsAfterTimeStep().

◆ clump_damping

Mdouble ChangingTOIParticle::clump_damping = 10
private

◆ clump_index

int ChangingTOIParticle::clump_index
private

◆ clump_mass

Mdouble ChangingTOIParticle::clump_mass
private

◆ data

◆ final_orientation

Vec3D ChangingTOIParticle::final_orientation = Vec3D(1,0,0)

Referenced by actionsAfterTimeStep().

◆ functional

Mdouble ChangingTOIParticle::functional = 0

Referenced by actionsAfterTimeStep().

◆ inertia_profiles

Double2DVector ChangingTOIParticle::inertia_profiles

◆ init_orientation

Vec3D ChangingTOIParticle::init_orientation = Vec3D(1,0,0)

Referenced by setupInitialConditions().

◆ insertionBoundary

CubeInsertionBoundary* ChangingTOIParticle::insertionBoundary
private

◆ progDuration

Mdouble ChangingTOIParticle::progDuration = 0

Referenced by actionsAfterTimeStep().

◆ rotatingWallID

unsigned ChangingTOIParticle::rotatingWallID = 0
private

◆ symDuration

Mdouble ChangingTOIParticle::symDuration = 0

The documentation for this class was generated from the following files: